

UGELLI SPRUZZATORI PER L'INDUSTRIA

PNR ITALIA UGELLI SPRUZZATORI PER L'INDUSTRIA

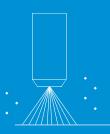
PNR Italia produce e commercializza da piccoli ugelli spruzzatori per uso individuale fino a sistemi di spruzzatura per grandi impianti industriali ed è in grado di rispondere ad ogni esigenza del cliente con soluzioni mirate.

L'ampia gamma di prodotti comprende ugelli atomizzatori, teste di lavaggio e accessori complementari come filtri, pistole e tubi per il lavaggio industriale, eiettori, ugelli soffiatori, giunti a snodo e fascette per tubi.

Situato a Voghera, non lontano da Milano, l'Headquarter e stabilimento produttivo si trova in una zona strategica favorita dalla vicinanza alle principali reti autostradali e a importanti rotte marittime internazionali, facilmente raggiungibile dal porto di Genova.
PNR Italia ha avviato la sua attività nel 1968 con il commercio e la produzione di componenti ed ugelli spruzzatori per impianti antincendio e,

successivamente, con una gamma di spruzzatori per applicazioni industriali. L'azienda, nel tempo, è cresciuta e si è consolidata attraverso una politica commerciale basata su una diffusa rete di partner nei principali mercati esteri ed anche grazie ad un investimento continuo sulla ricerca.

Oggi PNR Italia ha a disposizione un impianto produttivo tecnologicamente avanzato per la produzione di ugelli spruzzatori, teste di lavaggio e atomizzatori con macchine di assoluta qualità, molte delle quali lavorano con tecnologia CNC, spesso progettate internamente per lavorazioni speciali.


Con una produzione annua di circa 9 milioni di pezzi, PNR Italia è una solida realtà industriale orientata alla crescita costante, guidata da investimenti ad alto contenuto tecnologico e dall'innovazione di prodotto.

INDICE

- 2 UGELLI PER DISCAGLIATURA
- 3 BANCO DI DISCAGLIATURA
- 4 LE NOVITÀ DI PNR ITALIA
- 5 PRESTAZIONI DEGLI UGELLI DISCAGLIATORI
- 6 EXTRA HX GB
- 8 EXTRA HX GK
- 10 GW
- 12 HW AA
- 14 HW AB
- 16 HW AH
- 18 HW AK
- 20 HV AX
- 22 HW AM
- 24 ACCESSORI PER UGELLI DISCAGLIATORI
- 26 INFORMAZIONI GENERALI

UGELLI PER DISCAGLIATURA

PRINCIPI DI DISCAGLIATURA

Gli ugelli discagliatori vengono utilizzati per un'efficace rimozione del calcare nella laminazione a caldo. Il metodo migliore è la discagliatura idromeccanica mediante getti d'acqua ad alta pressione formati da speciali ugelli discagliatori. La gamma di pressioni di esercizio va da 50 a 400 bar (725 a 5.800 psi), per il tipo GW da 30 a 200 bar (da 435 a 2.900 psi).

L'impatto del getto d'acqua sulla superficie calda dell'acciaio produce una forza d'urto che, unita all'azione termica dovuta alla differenza di temperatura tra getti e lastre, genera l'effetto disincrostante. La qualità del getto dell'ugello ha un grande effetto sulla discagliatura della superficie dell'acciaio nella laminazione a caldo ed è fondamentale per la qualità del prodotto finale.

FUNZIONE DEGLI UGELLI DISCAGLIATORI

Un'efficace rimozione del calcare richiede l'uso di un ugello appropriato progettato e realizzato con uno speciale profilo interno per fornire alti valori di impatto e un getto di getto a flusso costante lungo il processo di disincrostazione. La composizione generale di un ugello discagliatore è mostrata nella figura a destra.

La ricerca e sviluppo PNR, migliorando l'uniformità dello spruzzo e riducendo l'angolo di spruzzo secondario, potrebbe ottenere un aumento del 22% della pressione d'impatto rispetto agli standard precedenti.

IMPACT FORCE

- Forza d'impatto F i è il termine usato per definire il momento di una vena fluida
- Dove Fi = $m \times ve = (Qe \times p) \times Ve$
- Qe = Flow rate (m3 / sec)
- ρ = Fluid density (N.s2/m4)
- Ve = Fluid speed (m/sec

Per motivi pratici, è comune usare la formula

$Fi* = 0.236 \times QI \times \sqrt{(P)}$

Dove: Q = It / min P = Kg / cm2 (bar) Fi = Newton

Rappresenta la forza d'urto teorica di una vena fluida che arriva all'ugello e non considera:

A. Perdita di carico interna all'interno dell'ugello;

B. Riduzione della forza d'urto dovuta alla distanza tra l'orifizio e il punto d'impatto. Per adeguare la forza di impatto reale a quella teorica precedente, vengono utilizzati fattori di correzione, basati su prove di laboratorio.

PRESSIONE D'URTO

Quando il getto a ventaglio piatto generato dall'ugello colpisce un'area A, si definisce pressione di impatto il rapporto tra la forza di impatto e l'area A.

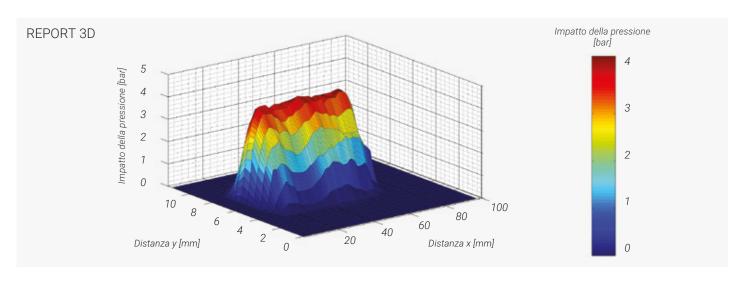
MISURAZIONE DELL'IMPATTO

I nostri ugelli discagliatori sono testati tramite una macchina di prova tridimensionale che misura l'impatto e la distribuzione del getto di spruzzo. Una cella di carico, posta nella parte inferiore dell'ugello, si muove lungo il percorso del getto nebulizzando la sua forza di impatto millimetro per millimetro. I valori di pressione rispetto alla superficie da disincrostare, angolo di inclinazione e angolo di offset, possono essere variati secondo le specifiche tecniche richieste dai clienti. PNR ha progettato e realizzato un banco prova di discagliatura, con passi di misura regolabili da 0,2 a 2 mm. Le curve di uscita del banco di discagliatura sono riportate nella pagina seguente, e sono disponibili su richiesta del cliente, specificando l'ugello e lo stabilizzatore di flusso richiesti, la pressione di esercizio e l'altezza di spruzzatura.

BANCO DI DISCAGLIATURA

PNR Italia offre ai propri Clienti la possibilità di determinare le prestazioni dei propri ugelli discagliatori utilizzando una moderna e precisa misurazione della loro portata ad una data pressione.

PRESSIONE D'IMPATTO LUNGO L'ASSE Y Angolo Beta effettivo = 2,95 Angolo Beta effettivo = 2,95


LEGENDA

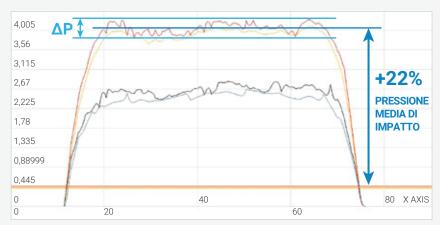
Valore massimo di pressione rilevato sull'intercetta dell'asse verticale.

Il valore efficace è calcolato considerando il valore medio dei valori di pressione di impatto degli 8 punti adiacenti allo specifico punto di misura, in modo da non considerare il possibile effetto di vene fluide locali. La curva arancione rappresenta il valore efficace massimo così calcolato.

Valore medio di pressione riscontrato all'intercettazione dell'asse verticale; pertanto, sull'asse X (corrispondente all'angolo di spruzzo primario) sarà indicata la media dei valori misurati lungo l'asse Y (corrispondente all'angolo di spruzzo secondario) in corrispondenza di tale valore di X.

Valore efficace medio calcolato della pressione misurata all'intercettazione dell'asse verticale calcolato come sopra.

LE NOVITÀ DI PNR ITALIA


PNR HA SVILUPPATO UNA NUOVA GAMMA DI UGELLI DISCAGLIATORI AD ALTE PRESTAZIONI:

Nella nuova gamma di ugelli discagliatori **EXTRA-HX**

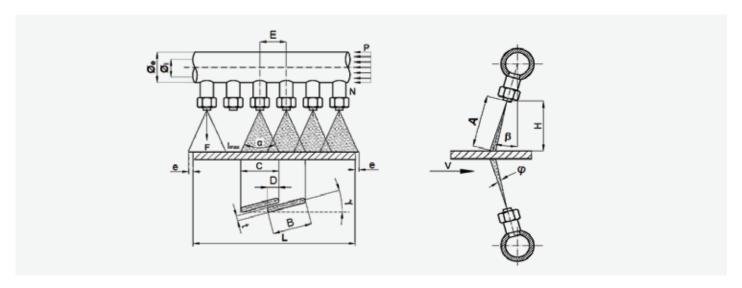
i guidaflusso sono stati progettati in modo da ridurre al minimo la turbolenza del flusso, con un relativo miglioramento del 22% della forza d'urto.

Il nuovo design delle punte degli ugelli fornisce una densità di spruzzo uniforme lungo la larghezza dello spruzzo, con un valore ridotto di DP.

MIGLIORATA PRESSIONE D'URTO, RIDOTTE VARIAZIONI ΔΡ

INTERCAMBIABILITÀ DEI COMPONENTI CON I MODELLI PRECEDENTI

DIMENSIONE MINI	EXTRA-HX™Type GB	HW/AB	
Connessione dell'ugello	3/8 BSPP	M16 x 1,5	
Codice e connessione guidaflusso	3/8 BSPP	M16 x 1,5	
Tipo di guarnizione	VDA 20C1 T3		
Tipo di ugello	Serie ZWA		
Tipo di ghiera	Serie VAW		


DIMENSIONE STANDARD	EXTRA-HX™Type GK	HW/AK		
Connessione dell'ugello	3/8 BSPP	M16 x 1,5		
Codice e connessione guidaflusso	3/8 BSPP	M16 x 1,5		
Tipo di guarnizione	VDA 24C1 T3			
Tipo di ugello	Serie ZWA			
Tipo di ghiera	Serie VAW			

PRESTAZIONI DEGLI UGELLI DISCAGLIATORI

VALORE DELLA LARGHEZZA DI SPRUZZO B E C (mm) ALLA PRESSIONE DI ALIMENTAZIONE 150 BAR - ANGOLO RACK (β) 15° E ANGOLO OFFSET (γ) 15°

ALTEZZA	ANGOLO DI SPRUZZO									
DI SPRUZZO	2	22°	26°		3	0°	3	4 °	4	0°
mm	В	С	В	С	В	С	В	С	В	С
80	39	38	46	44	54	52	61	59	73	71
100	48	47	57	55	66	64	75	72	90	87
125	58	56	69	66	79	76	90	87	107	103
150	68	66	81	78	94	91	107	103	128	124
200	85	82	103	99	120	116	136	131	163	157
250	104	100	126	122	146	141	166	160	200	193

I dati citati sono validi per gli intervalli: HX/GB; HX/GK; HX/HV. Per i restanti intervalli di valori alla pressione indicata, cremagliera e offset angoli e ad un'altezza di spruzzo di 150 mm corrispondono all'angolo di spruzzo nominale + 2°

Passo ugelli E = Passo minimo consigliato:

MIN. E	NIPPLO	GUIDAFLUSSO
mm	Codice	Codice
45	ZWA	XHW AG
45	ZWA	XHX DG
45	ZWA	XHW DG
60	ZWB	XHW CG
60	ZWB	XHX DG
60	ZWB	XHW DG
55	ZWC	XHW EG
40	ZWM	XHW MG
60	ZWW 0120 xx	
55 55	ZWW 0050 xxM ZWW 0040 xxF	Nessuno
	mm 45 45 45 60 60 60 55 40 60 55	mm Codice 45 ZWA 45 ZWA 45 ZWA 60 ZWB 60 ZWB 55 ZWC 40 ZWM 60 ZWW 2WM 2WW 55 ZWW 55 ZWW 55 ZWW

TOLLERANZA ANGOLO DI SPRUZZO

 $0 \div + 2^{\circ}$ at $Q = 22^{\circ}; 26^{\circ}; 30^{\circ}$

 $0 \div + 3^{\circ}$ at $Q = 34^{\circ}$

0 ÷ + **4**° at $\alpha = 40$ °

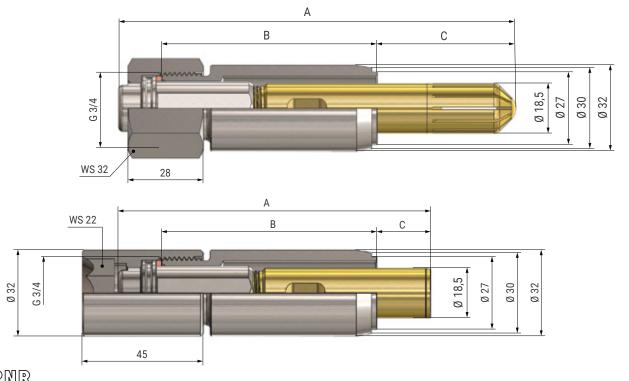
EXTRA-HX™ Tipo GB

UGELLI AD ALTO IMPATTO DIMENSIONE MINI

Il percorso dell'acqua che porta all'orifizio dell'ugello è stato completamente riprogettato per ridurre le perdite di energia causate dalla turbolenza, sono state eliminate tutte le brusche variazioni di sezione trasversale con conseguente aumento significativo della velocità dell'acqua all'orifizio dell'ugello.

CODICI ANGOLO DI SPRUZZO					
HXC	HXE	HXF	HXK	HXL	
22°	26°	30°	34°	40°	

MATERIALI			PESO kg *valore medio
C1	Corpo	AISI 303 acciaio inox	0,09*
Inserto		AISI 420 acciaio inox temprato	0,09.
F1	Corpo	AISI 303 acciaio inox	0.09*
' '	Inserto	Carburo di tungsteno	0,09"



DIMENSIONI DEGLI UGELLI ASSEMBLATI

NIPPLO	ZWA 0032 B2	ZWA 0039 B2	ZWA 0080 B2
STABILIZZATORE	A B C	A B C	A B C
XHX DG10T1	116 32 68	116 39 61	116 80 20
XHX DG11T1	133 32 85	133 39 78	133 80 37
XHX DG20T1	147 32 99	147 39 92	147 80 51
XHX DG21T1	167 32 119	167 39 112	167 80 71
XHX DG22T1	187 32 139	187 39 132	187 80 91

A = Lunghezza completa unità di discagliatura

B = Lunghezza nipplo

CODICE	RG pollici	LN mm	PESO Kg
ZWA 0032 B2	G 3/4	32	0.08
ZWA 0039 B2	G 3/4	39	0.10
ZWA 0080 B2	G 3/4	80	0.23

	MATERIALE				
B2	AISI 304 acciaio inox				

CODICE	LS mm	PESO Kg	NOTE
XHX DG 10 T1	79	0,08	senza filtro
XHX DG 11 T1	96	0,10	senza filtro
XHX DG 20 T1	110	0,12	con filtro
XHX DG 21 T1	130	0,14	con filtro
XHX DG 22 T1	150	0,15	con filtro

MATERIALI					
	Corpo	Ottone			
T1	Filtro	Ottone			
B31	Guidaflusso	AISI 316 L s.s.			

CODICE	
VDA 20C1 T3	

	MATERIALE
Т3	Rame

CODICE				CAPACITÀ (LPM) PRESSIONE (BAR)			
	80	140	200	240	300	400	
2045xxGB	4,5	5,9	7,2	7,8	8,7	10,0	
2063xxGB	6,3	8,3	10,0	10,9	12,2	14,1	
2106xxGB	10,6	14,2	16,8	18,4	20,5	23,7	
2134xxGB	13,4	17,7	21,2	23,2	25,9	29,9	
2162xxGB	16,2	21,4	25,6	28,0	31,4	36,2	
2208xxGB	20,8	27,5	32,9	36,0	40,2	46,5	
2250xxGB	25,0	33,0	39,5	43,3	48,4	55,9	
2320xxGB	32,0	42,3	50,6	55,4	62,0	71,6	
2402xxGB	40,2	53,2	63,6	69,6	77,8	89,9	
2520xxGB	52,0	68,8	82,2	90,0	101	116	
2642xxGB	64,2	84,9	102	111	124	144	
2798xxGB	79,8	106	126	138	155	178	
2996xxGB	99,6	132	157	173	193	223	
3112xxGB	112	148	177	194	217	250	
3120xxGB	120	159	190	208	232	268	

CODICE	NOTE	PESO kg *valore medio
VAW A075 B1	esagono esterno	0,09*
VAW C075 B1	costruito in esagono	0,13 *

MATERIALE				
B1	AISI 303 acciaio inox			

MODELLO	ANGOLO DI SPRUZZO	CAPACITÀ	MATERIALE	TIPO
HX	С	2045	XX	GB

ESEMPIO DI ORDINE		
HXC 2045 F1GB		

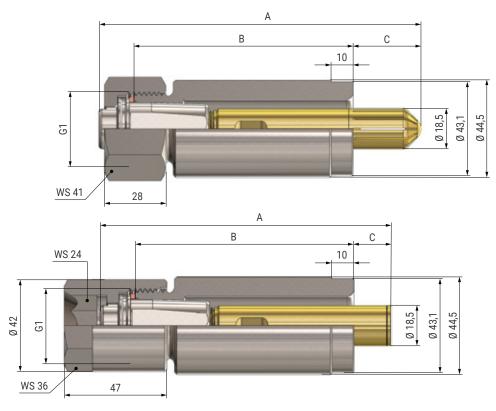
EXTRA-HX™ Type GK

UGELLI AD ALTO IMPATTO DIMENSIONE STANDARD

Il percorso dell'acqua che porta all'orifizio dell'ugello è stato completamente riprogettato per ridurre le perdite di energia causate dalla turbolenza, sono state eliminate tutte le brusche variazioni di sezione trasversale con conseguente aumento significativo della velocità dell'acqua all'orifizio dell'ugello.

CODICI ANGOLO DI SPRUZZO					
HXC	HXE	HXF	HXK	HXL	
22°	26°	30°	34°	40°	

		MATERIALI	PESO kg *valore medio
C1	Corpo	AISI 303 acciaio inox	0.10*
	Insert	AISI 420 acciaio inox temprato	0,13*
F1	F1 0 /	AISI 303 acciaio inox	0.13*
' '	Corpo	Carburo di tungsteno	0,13"



DIMENSIONI DEGLI UGELLI ASSEMBLATI

NIPPLO	ZWB 0073 B2	ZWB 0100 B2	ZWB 0120 B2
STABILIZZATORE	A B C	A B C	A B C
XHX DG10T1	116 73 27	116 100 0	116 120 0
XHX DG11T1	133 73 44	133 100 17	133 120 0
XHX DG20T1	147 73 58	147 100 31	147 120 11
XHX DG21T1	167 73 78	167 100 51	167 120 31
XHX DG22T1	187 73 98	187 100 71	187 120 51

A = Lunghezza completa unità di discagliatura

B = Lunghezza nipplo

CODICE	RG pollici	LN mm	PESO Kg
ZWB 0073 B2	G 1	73	0.49
ZWB 0100 B2	G 1	100	0.71
ZWB 0120 B2	G 1	120	0.85

	MATERIALE
B2	AISI 304 acciaio inox

CODICE	LS mm	PESO Kg	NOTE
XHX DG 10 T1	79	0,08	senza filtro
XHX DG 11 T1	96	0,10	senza filtro
XHX DG 20 T1	110	0,12	con filtro
XHX DG 21 T1	130	0,14	con filtro
XHX DG 22 T1	150	0,15	con filtro

MATERIALI				
	Corpo	Ottone		
T1	Filtro	Ottone		
B31	Guidaflusso	AISI 316 L inox		

CODICE
VDA 24C1 T3

	MATERIALE
ТЗ	Rame

CODICE	CAPACITÀ (lpm) PRESSIONE (bar)					
	80	140	200	240	300	400
2045xxGK	4,5	5,9	7,2	7,8	8,7	10,0
2063xxGK	6,3	8,3	10,0	10,9	12,2	14,1
2106xxGK	10,6	14,2	16,8	18,4	20,5	23,7
2134xxGK	13,4	17,7	21,2	23,2	25,9	29,9
2162xxGK	16,2	21,4	25,6	28,0	31,4	36,2
2208xxGK	20,8	27,5	32,9	36,0	40,2	46,5
2250xxGK	25,0	33,0	39,5	43,3	48,4	55,9
2320xxGK	32,0	42,3	50,6	55,4	62,0	71,6
2402xxGK	40,2	53,2	63,6	69,6	77,8	89,9
2520xxGK	52,0	68,8	82,2	90,0	101	116
2642xxGK	64,2	84,9	102	111	124	144
2798xxGK	79,8	106	126	138	155	178
2996xxGK	99,6	132	157	173	193	223
3112xxGK	112	148	177	194	217	250
3120xxGK	120	159	190	208	232	268

GHIERA 💮

CODICE	NOTE	PESO kg *valore medio
VAW B100 B1	esagono esterno	0,16*
VAW D100 B1	costruito in esagono	0,25 *

	MATERIALE
B1	AISI 303 acciaio inox

MODELLO	ANGOLO DI SPRUZZO	CAPACITÀ	MATERIALE	TIPO
HX	С	2045	XX	GK

ESEMPIO DI ORDINE	
HXC 2045 F1GK	

Tipo GW

UGELLI A CODA DI RONDINE

Gli ugelli della serie GW sono da molti anni lo standard mondiale negli impianti di disincrostazione a caldo. Hanno subito molti miglioramenti, in particolare al profilo dell'orifizio interno, con conseguente distribuzione molto uniforme dell'impatto del getto d'acqua sulla superficie dell'acciaio. Il loro design tipico con un accoppiamento a coda di rondine tra nipplo e punta dell'ugello assicura il corretto allineamento dell'ugello sul collettore di spruzzatura. Diversi valori di lunghezza dei nippli e un controdado specifico consentono un'ampia scelta di diverse dimensioni di montaggio.

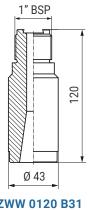
CODICI ANGOLO DI SPRUZZO					
GWC	GWE	GWF	GWL		
22°	26°	30°	40°		

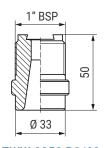
		MATERIALI	PESO kg *valore medio
C1	Corpo	AISI 303 acciaio inox	0.07*
CI	Inserto	AISI 420 acciaio inox temprato	0,07"
F1	Corpo	AISI 303 acciaio inox	0.00*
	Inserto	Carburo di tungsteno	0,08*

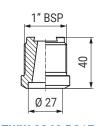
COME ORDINARE I PRODOTTI PNR

MODELLO	ANGOLO DI SPRUZZO	CAPACITÀ	MATERIALE
GW	С	2162	XX

ESEMPIO DI ORDINE	
GWC 2162 C1	


TAVOLA DI CONVERSIONE (UE - USA)


PRESSIONE	CAPACITÀ
1 bar = 14,5 psi	1 lpm = 0,264 gpm



CODICE	RG pollici	LN mm	PESO Kg
ZWW 0120 B31	1	120	0.90
ZWW 0050 B31M	1	50	0.22
ZWW 0040 B31F	1	40	0.18

	MATERIALE
B31	AISI 316L acciaio inox

ZWW	0120	B3

ZWW 0050 B31M

ZWW 0040 B31F

			CAPACI	TÀ (lpm)		
CODICE				ONE (bar)		
	80	140	200	240	300	400
2162xx	16,2	21,4	25,6	28,0	31,4	36,2
2208xx	20,8	27,5	32,9	36,0	40,2	46,5
2250xx	25,0	33,0	39,5	43,3	48,4	55,9
2320xx	32,0	42,3	50,6	55,4	62,0	71,6
2402xx	40,2	53,2	63,6	69,6	77,8	89,9
2520xx	52,0	68,8	82,2	90,0	101	116
2642xx	64,2	84,9	102	111	124	144
2798xx	79,8	106	126	138	155	178
2996xx	99,6	132	157	173	193	223
3112xx	112	148	177	194	217	250
3120xx	120	159	190	208	232	268

CODICE	MATERIALE		PESO kg *valore medio
VAA 1001 B1B	B1	AISI 303 acciaio inox	0.22*

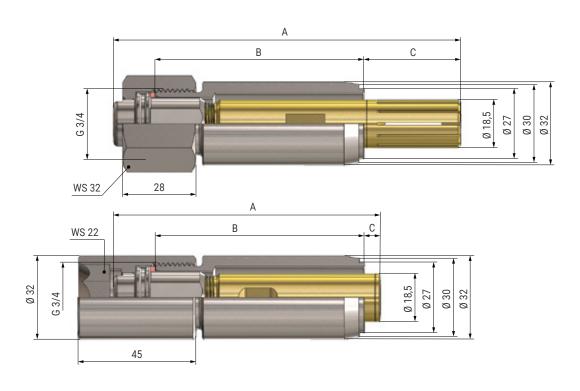
Tipo AA

UGELLI BOCCHELLO CORTO DIMENSIONE MINI

Il design moderno di questi ugelli offre lo stesso vantaggio degli ugelli HW a grandezza naturale. Inoltre consente di utilizzare un passo più piccolo tra gli ugelli consentendo un valore di impatto per unità di lunghezza più elevato. L'efficienza dell'ugello è migliorata per mezzo di uno stabilizzatore di flusso accuratamente progettato, che riduce al minimo la turbolenza dovuta al brusco cambio di direzione all'ingresso dal collettore principale. È inoltre previsto un filtro da montare all'ingresso dell'ugello, riducendo al minimo l'intasamento e l'abrasione

CODICI ANGOLO DI SPRUZZO				
HWC	HWE	HWF	HWL	
22°	26°	30°	40°	

	MATERIALI		
C1	Corpo	AISI 303 acciaio inox	0.07*
01	Inserto	AISI 420 acciaio inox temprato	0,07^
F1	Corpo	AISI 303 acciaio inox	0.00*
	Inserto	Carburo di tungsteno	0,08*



DIMENSIONI DEGLI UGELLI ASSEMBLATI

NIPPLO	ZWA 0032 B2	ZWA 0039 B2	ZWA 0080 B2
STABILIZZATORE	A B C	A B C	A B C
XHW AG10T1	97 32 48,5	97 39 41,5	97 80 0.5
XHW AG20T1	133 32 85	133 39 78	133 80 37
XHW AG21T1	153 32 105	153 39 98	153 80 57

A = Lunghezza completa unità di discagliatura

B = Lunghezza nipplo

CODICE	RG pollici	LN mm	PESO Kg
ZWA 0032 B2	G 3/4	32	0.06
ZWA 0039 B2	G 3/4	39	0.08
ZWA 0080 B2	G 3/4	80	0.19

	MATERIALE
B2	AISI 304 acciaio inox

CODICE	LS mm	PESO Kg	NOTE
XHW AG 10 T1	74	0,09	senza filtro
XHW AG 20 T1	110	0,14	con filtro
XHW AG 21 T1	130	0,16	con filtro

MATERIALI						
	T1	Corpo	Ottone			
	11	Filtro	Ottone			
	B31	Guidaflusso	AISI 316 L inox			

CODICE
VDA 20C1 T3

MATERIALE					
Т3	Rame				

CODICE	CAPACITÀ (lpm) PRESSIONE (bar)							
	80	140	200	240	300	400		
2045xxAA	4,5	5,9	7,2	7,8	8,7	10,0		
2063xxAA	6,3	8,3	10,0	10,9	12,2	14,1		
2106xxAA	10,6	14,2	16,8	18,4	20,5	23,7		
2134xxAA	13,4	17,7	21,2	23,2	25,9	29,9		
2162xxAA	16,2	21,4	25,6	28,0	31,4	36,2		
2208xxAA	20,8	27,5	32,9	36,0	40,2	46,5		
2250xxAA	25,0	33,0	39,5	43,3	48,4	55,9		
2320xxAA	32,0	42,3	50,6	55,4	62,0	71,6		
2402xxAA	40,2	53,2	63,6	69,6	77,8	89,9		
2520xxAA	52,0	68,8	82,2	90,0	101	116		
2642xxAA	64,2	84,9	102	111	124	144		
2798xxAA	79,8	106	126	138	155	178		
2996xxAA	99,6	132	157	173	193	223		
3112xxAA	112	148	177	194	217	250		
3120xxAA	120	159	190	208	232	268		

CODICE	NOTE	PESO kg *valore medio
VAW A075 B1	esagono esterno	0,09*
VAW C075 B1	costruito in esagono	0,12 *

	MATERIALE
B1	AISI 303 acciaio inox

MODELLO	ANGOLO DI SPRUZZO	CAPACITÀ	MATERIALE	TIPO
HW	С	2045	XX	AA

ESEMPIO DI ORDINE	
HWC 2045 F1AA	

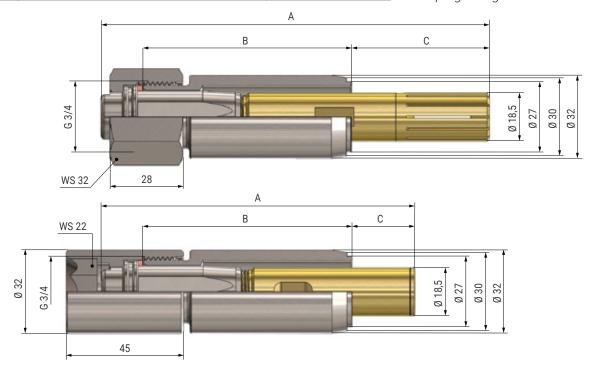
Tipo AB

UGELLI AD ALTO IMPATTO DIMENSIONE MINI

Il percorso dell'acqua che porta all'orifizio dell'ugello è stato completamente ridisegnato per ridurre le perdite di energia causate dalla turbolenza, tutte le modifiche della sezione trasversale tagliente sono state eliminate con un significativo aumento della velocità dell'acqua nell'orifizio dell'ugello. I suddetti vantaggi si aggiungono a quelli offerti da uno stabilizzatore di flusso accuratamente progettato e da un filtro quando assemblato all'ingresso del nipplo, riducendo al minimo l'intasamento e l'abrasione dell'orifizio dell'ugello.

CODICI ANGOLO DI SPRUZZO							
HWC	HWE	HWF	HWL				
22°	26°	30°	40°				

	MATERIALI					
C1	Corpo	AISI 303 acciaio inox	0.10*			
01	Inserto	AISI 420 acciaio inox temprato	0,10"			
F1	Corpo	AISI 303 acciaio inox	0.11*			
1 1	Inserto	Carburo di tungsteno	0,11"			



DIMENSIONI DEGLI UGELLI ASSEMBLATI

NIPPLO	ZWA 0032	B2	ZWA	4 0039	B2	ZWA	0800	B2
STABILIZZATORE	А В	С	А	В	С	А	В	С
XHW DG10 T1	115 32	67	115	39	60	115	80	19
XHW DG11 T1	135 32	87	135	39	80	135	80	39
XHW DG20 T1	149 32	101	149	39	94	149	80	53
XHW DG21 T1	169 32	121	169	39	114	169	80	73
XHW DG21 T1	189 32	141	189	39	134	189	80	93

A = Lunghezza completa unità di discagliatura

B = Lunghezza nipplo

CODICE	RG pollici	LN mm	PESO Kg
ZWA 0032 B2	G 3/4	32	0.06
ZWA 0039 B2	G 3/4	39	0.08
ZWA 0080 B2	G 3/4	80	0.19

MATERIALE				
B2	AISI 304 acciaio inox			

CODICE	LS mm	PESO Kg	NOTE
XHW DG10 T1	76	0,08	without filter
XHW DG11 T1	96	0.10	without filter
XHW DG20 T1	110	0,11	with filter
XHW DG21 T1	130	0,14	with filter
XHW DG22 T1	150	0.16	with filter

MATERIALE				
T1	Corpo	Ottone		
T1	Filtro	Ottone		
B31	Stabilizzatore	AISI 316 L inox		

со	DICE
VDA 2	20C1 T3

	MATERIALE
ТЗ	Rame

CODICE	CAPACITÀ (lpm) PRESSIONE (bar)					
	80	140	200	240	300	400
2045xxAB	4,5	5,9	7,2	7,8	8,7	10,0
2063xxAB	6,3	8,3	10,0	10,9	12,2	14,1
2106xxAB	10,6	14,2	16,8	18,4	20,5	23,7
2134xxAB	13,4	17,7	21,2	23,2	25,9	29,9
2162xxAB	16,2	21,4	25,6	28,0	31,4	36,2
2208xxAB	20,8	27,5	32,9	36,0	40,2	46,5
2250xxAB	25,0	33,0	39,5	43,3	48,4	55,9
2320xxAB	32,0	42,3	50,6	55,4	62,0	71,6
2402xxAB	40,2	53,2	63,6	69,6	77,8	89,9
2520xxAB	52,0	68,8	82,2	90,0	101	116
2642xxAB	64,2	84,9	102	111	124	144
2798xxAB	79,8	106	126	138	155	178
2996xxAB	99,6	132	157	173	193	223
3112xxAB	112	148	177	194	217	250
3120xxAB	120	159	190	208	232	268

GHIERA		
--------	--	--

CODICE	NOTE	PESO kg *valore medio
VAW A075 B1	esagono esterno	0,09*
VAW C075 B1	costruito in esagono	0,12 *

MATERIALE			
B1	AISI 303 acciaio inox		

MODELLO	ANGOLO DI SPRUZZO	CAPACITÀ	MATERIALE	TIPO
HW	С	2045	XX	AB

ESEMPIO DI ORDINE	
HWC 2045 F1AB	

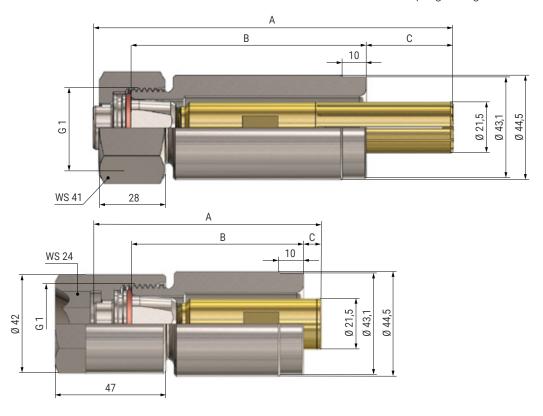
Tipo AH

UGELLI CORTI DIMENSIONE STANDARD

Il design moderno di questi ugelli offre la comodità di un sistema di allineamento più razionale, con una guarnizione in rame utilizzata tra il nipplo e la punta dell'ugello. L'efficienza dell'ugello è migliorata grazie a uno stabilizzatore di flusso accuratamente progettato, che minimizza la turbolenza dovuta al cambiamento di direzione acuto all'ingresso dal collettore principale. Inoltre è previsto un filtro da montare all'ingresso dell'ugello, riducendo al minimo l'intasamento e l'abrasione dell'ugello.

CODICI ANGOLO DI SPRUZZO					
HWC	HWE	HWF	HWL		
22°	26°	30°	40°		

		MATERIALI	PESO kg *valore medio
C1	Corpo	AISI 303 acciaio inox	0.00*
01	Inserto	AISI 420 acciaio inox temprato	0,08*
F1	Corpo	AISI 303 acciaio inox	0.09*
' '	Inserto	Carburo di tungsteno	0,09"



DIMENSIONI DEGLI UGELLI ASSEMBLATI

NIPPLO	ZWB	0073	B2	ZWB	0100 E	32	ZWE	0120 E	32
STABILIZZATORE	А	В	С	А	В	С	А	В	С
XHW CG10 T1	96.5	73	7.5	116	100	0	136	120	0
XHW CG20 T1	133	73	44	133	100	17	136	120	0
XHW CG21 T1	153	73	64	153	100	37	153	120	17

A = Lunghezza completa unità di discagliatura

B = Lunghezza nipplo

CODICE	RG pollici	LN mm	PESO Kg
ZWB 0073 B2	G 1	73	0.48
ZWB 0100 B2	G 1	100	0.70
ZWB 0120 B2	G 1	120	0.84

	MATERIALE
B2	AISI 304 acciaio inox

CODICE	LS mm	PESO Kg	NOTE
XHW CG10 T1	74	0,12	senza filtro
XHWCG20 T1	110,5	0,18	con filtro
XHW CG21 T1	130,5	0,20	con filtro

MATERIALE						
T1	Corpo	Ottone				
	Filtro	Ottone				
B31	Guidaflusso	AISI 316 L inox				

C	ODICE
VDA	24C1 T3

	MATERIALE
Т3	Rame

CODICE			CAPACIT PRESSIO			
	80	140	200	240	300	400
2045xxAH	4,5	5,9	7,2	7,8	8,7	10,0
2063xxAH	6,3	8,3	10,0	10,9	12,2	14,1
2106xxAH	10,6	14,2	16,8	18,4	20,5	23,7
2134xxAH	13,4	17,7	21,2	23,2	25,9	29,9
2162xxAH	16,2	21,4	25,6	28,0	31,4	36,2
2208xxAH	20,8	27,5	32,9	36,0	40,2	46,5
2250xxAH	25,0	33,0	39,5	43,3	48,4	55,9
2320xxAH	32,0	42,3	50,6	55,4	62,0	71,6
2402xxAH	40,2	53,2	63,6	69,6	77,8	89,9
2520xxAH	52,0	68,8	82,2	90,0	101	116
2642xxAH	64,2	84,9	102	111	124	144
2798xxAH	79,8	106	126	138	155	178
2996xxAH	99,6	132	157	173	193	223
3112xxAH	112	148	177	194	217	250
3120xxAH	120	159	190	208	232	268

CODICE	NOTE	PESO kg *valore medio
VAW B100 B1	esagono esterno	0,16*
VAW D100 B1	costruito in esagono	0,24 *

MATERIALE					
B1	AISI 303 acciaio inox				

MODELLO	ANGOLO DI SPRUZZO	CAPACITÀ	MATERIALE	TIPO
HW	С	2045	XX	АН

ESEMPIO DI ORDINE	
HWC 2045 F1AH	

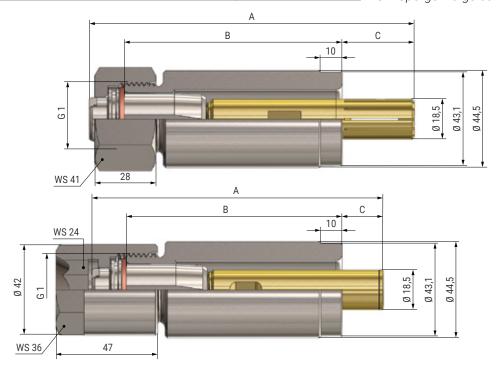
Tipo AK

UGELLI AD ALTO IMPATTO DIMENSIONE STANDARD

Il percorso dell'acqua che porta all'orifizio dell'ugello è stato completamente ridisegnato per ridurre le perdite di energia causate dalla turbolenza, tutte le modifiche della sezione trasversale tagliente sono state eliminate con un significativo aumento della velocità dell'acqua nell'orifizio dell'ugello. I suddetti vantaggi si aggiungono a quelli offerti da uno stabilizzatore di flusso accuratamente progettato e da un filtro quando assemblato all'ingresso del nipplo, riducendo al minimo l'intasamento e l'abrasione dell'orifizio dell'ugello.

CODICI ANGOLO DI SPRUZZO						
HWC	HWE	HWF	HWL			
22°	26°	30°	40°			

		MATERIALI	PESO kg *valore medio
C1	Corpo	AISI 303 acciaio inox	014*
01	Inserto	AISI 420 acciaio inox temprato	0,14*
F1	Corpo	AISI 303 acciaio inox	0.15*
1.1	Inserto	Carburo di tungsteno	0,15*



DIMENSIONI DEGLI UGELLI ASSEMBLATI

NIPPLO	ZWB 0073 B2	ZWB 0100 B2	ZWB 0120 B2
STABILIZZATORE	A B C	A B C	A B C
XHW DG10 T1	115 73 26	115 100 0	115 120 0
XHW DG11 T1	135 73 46	135 100 19	135 120 0
XHW DG20 T1	149 73 60	149 100 33	149 120 13
XHW DG21 T1	169 73 80	169 100 53	169 120 33
XHW DG21 T1	189 73 100	189 100 73	189 120 53

A = Lunghezza completa unità di discagliatura

B = Lunghezza nipplo

CODICE	RG pollici	LN mm	PESO Kg
ZWB 0073 B2	G 1	73	0.48
ZWB 0100 B2	G 1	100	0.70
ZWB 0120 B2	G 1	120	0.84

	MATERIALE
B2	AISI 304 acciaio inox

CODICE	LS mm	PESO Kg	NOTE
XHW DG10 T1	76	0,08	senza filtro
XHW DG11 T1	96	0.10	senza filtro
XHW DG20 T1	110	0,11	con filtro
XHW DG21 T1	130	0,14	con filtro
XHW DG22 T1	150	0.15	con filtro

MATERIALE				
T1	Corpo	Ottone		
	Filtro	Ottone		
B31	Guidaflusso	AISI 316 L s.s.		

CODIC	Е
VDA 24C1	Т3

	MATERIALE
ТЗ	Rame

CODICE			CAPACIT PRESSIO			
	80	140	200	240	300	400
2045xxAK	4,5	5,9	7,2	7,8	8,7	10,0
2063xxAK	6,3	8,3	10,0	10,9	12,2	14,1
2106xxAK	10,6	14,2	16,8	18,4	20,5	23,7
2134xxAK	13,4	17,7	21,2	23,2	25,9	29,9
2162xxAK	16,2	21,4	25,6	28,0	31,4	36,2
2208xxAK	20,8	27,5	32,9	36,0	40,2	46,5
2250xxAK	25,0	33,0	39,5	43,3	48,4	55,9
2320xxAK	32,0	42,3	50,6	55,4	62,0	71,6
2402xxAK	40,2	53,2	63,6	69,6	77,8	89,9
2520xxAK	52,0	68,8	82,2	90,0	101	116
2642xxAK	64,2	84,9	102	111	124	144
2798xxAK	79,8	106	126	138	155	178
2996xxAK	99,6	132	157	173	193	223
3112xxAK	112	148	177	194	217	250
3120xxAK	120	159	190	208	232	268

CODICE	NOTE	PESO kg *valore medio
VAW B100 B1	esagono esterno	0,16*
VAW D100 B1	costruito in esagono	0,24 *

МА		MATERIALE
	B1	AISI 303 acciaio inox

MODELLO	ANGOLO DI SPRUZZO	CAPACITÀ	MATERIALE	TIPO
HW	С	2045	XX	AK

ESEMPIO DI ORDINE
HWC 2045 F1AK

Tipo HV/AX

UGELLI AD ALTO IMPATTO DIMENSIONE SPECIALE

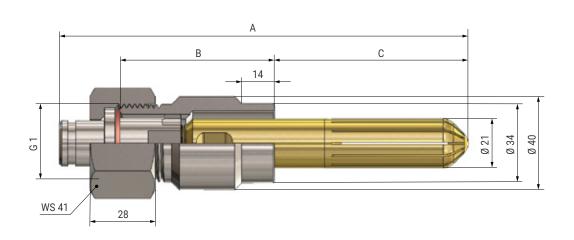
Gli ugelli ad alto impatto sono ampiamente utilizzati nei processi di laminazione a caldo in quanto forniscono un impatto adeguato per una decalcificazione coerente.

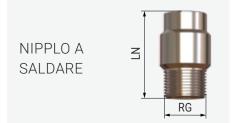
Il design moderno di questi ugelli offre la comodità di un sistema di allineamento più razionale che consente di utilizzare una tenuta in rame tra la punta del nipplo e dell'ugello. L'efficienza dell'ugello è migliorata grazie a uno stabilizzatore di flusso accuratamente progettato, che minimizza la turbolenza dovuta al cambiamento di direzione acuto all'ingresso dal collettore principale.

Inoltre è previsto un filtro da montare all'ingresso dell'ugello, riducendo al minimo l'intasamento e l'abrasione dell'ugello.

1		CODICI O DI SF	RUZZC	0	
HVC	HVE	HVF	HVK	HVL	
22°	26°	30°	34°	40°	

		MATERIALI	PESO kg *valore medio
F1	Corpo	AISI 303 acciaio inox	0.13*
' '	Inserto	Carburo di tungsteno	0,13"


DIMENSIONI DEGLI UGELLI ASSEMBLATI


NIPPLO ZWC 0062 B2		ZW	0066	B2		
STABILIZZATORE	А	В	С	А	В	С
XHV EG30 T1	130	62	87	130	66	83
XHV EG31 T1	175	62	87	175	66	83

A = Complete descaling unit length

B = Welding nipple length

C = Flow straightener protrusion

CODICE	RG pollici	LN mm	PESO Kg
ZWC 0062 B2	G 1	62	0.65
ZWC 0066 B2	G 1	66	0.70

MATERIALE	
B2	AISI 304 acciaio inox

CODICE	LS mm	PESO Kg	NOTE
XHV EG30 T1	93,5	0,11	con filtro
XHV EG31 T1	138,5	0,15	con filtro

MATERIALE			
T1	Corpo	Ottone	
11	Filtro	Ottone	
B31	Guidaflusso	AISI 316 L inox	

GUARNIZIONE

CODICE
VDA 24C1 T3

	MATERIALE
Т3	Rame

CODICE	CAPACITÀ (lpm) PRESSIONE (bar)					
	80	140	200	240	300	400
2045 F1AX	4,5	5,9	7,2	7,8	8,7	10,0
2063 F1AX	6,3	8,3	10,0	10,9	12,2	14,1
2106 F1AX	10,6	14,2	16,8	18,4	20,5	23,7
2134 F1AX	13,4	17,7	21,2	23,2	25,9	29,9
2162 F1AX	16,2	21,4	25,6	28,0	31,4	36,2
2208 F1AX	20,8	27,5	32,9	36,0	40,2	46,5
2250 F1AX	25,0	33,0	39,5	43,3	48,4	55,9
2320 F1AX	32,0	42,3	50,6	55,4	62,0	71,6
2402 F1AX	40,2	53,2	63,6	69,6	77,8	89,9
2520 F1AX	52,0	68,8	82,2	90,0	101	116
2642 F1AX	64,2	84,9	102	111	124	144
2798 F1AX	79,8	106	126	138	155	178
2996 F1AX	99,6	132	157	173	193	223
3112 F1AX	112	148	177	194	217	250
3120 F1AX	120	159	190	208	232	268

GHIERA

CODICE	NOTE	PESO kg *valore medio
VAW B100 B1	esagono esterno	0,16*
VAW D100 B1	costruito in esagono	0,24 *

MATERIALE	
B1	AISI 303 acciaio inox

MODELLO	ANGOLO DI SPRUZZO	CAPACITÀ	MATERIALE	TIPO
HV	С	2045	XX	AX

ESEMPIO DI ORDINE	
HVC 2045 F1AX	

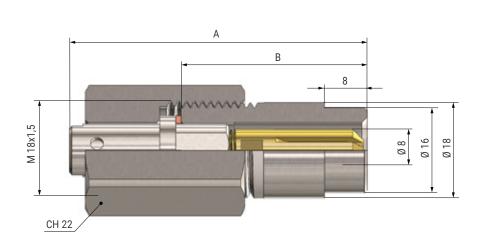
Tipo AM

UGELLI AD ALTO IMPATTO **DIMENSIONE MICRO**

In alcuni impianti la distanza centro-centro tra ugelli di decalcificazione può essere molto stretta. In questi casi l'uso di puntali di micro-discagliatura evita l'installazione di nippli e ugelli o anelli sul collettore di spruzzo, che sarebbe difficile, se non impossibile, con ugelli standard.

COI ANGOLO D			ZZ0
HWC	HWE	HWF	HWL
22°	26°	30°	40°

MATERIALI		PESO kg *valore medio	
F1	Corpo	AISI 303 acciaio inox	0.02*
' '	Inserto	Carburo di tungsteno	0,02



DIMENSIONI DEGLI UGELLI ASSEMBLATI

NIPPLO	ZWM 0035 B2
STABILIZZATORE	А В
XHW MG20 T1	56 35

A = Lunghezza completa unità di discagliatura

B = Lunghezza nipplo

NIPPLO A SALDARE

CODICE	RG	LN	PESO
	mm	mm	Kg
ZWM 0035 B2	M18x1,5	35	0.2

MATERIALE	
B2	AISI 304 acciaio inox

CODICE	LS mm	PESO Kg	NOTE
XHW MG20 T1	35	0.04	con filtro

MATERIALE		
T1	Corpo	Ottone
11	Filtro	Ottone
B31	Guidaflusso	AISI 316 L inox

GUARNIZIONE

CODICE
VDA 10A5 T3

	MATERIALE
Т3	Rame

CODICE	CAPACITÀ (lpm) PRESSIONE (bar)							
	80	140	200	240	300	400		
2045 F1AM	4,5	5,9	7,2	7,8	8,7	10,0		
2063 F1AM	6,3	8,3	10,0	10,9	12,2	14,1		
2106 F1AM	10,6	14,2	16,8	18,4	20,5	23,7		
2134 F1AM	13,4	17,7	21,2	23,2	25,9	29,9		
2162 F1AM	16,2	21,4	25,6	28,0	31,4	36,2		
2208 F1AM	20,8	27,5	32,9	36,0	40,2	46,5		
2250 F1AM	25,0	33,0	39,5	43,3	48,4	55,9		

CODICE	NOTE	PESO kg *valore medio
VAW MM18 B1	esagono esterno	0,06*

	MATERIALE
B1	AISI 303 acciaio inox

MODELLO	ANGOLO DI	CAPACITÀ	MATERIALE	TIPO
HW	SPRUZZO	2045	XX	AM

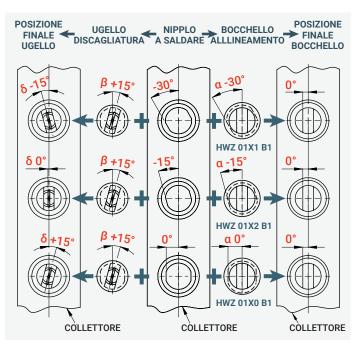
ESEMPIO DI ORDINE	
HWC 2045 F1AM	

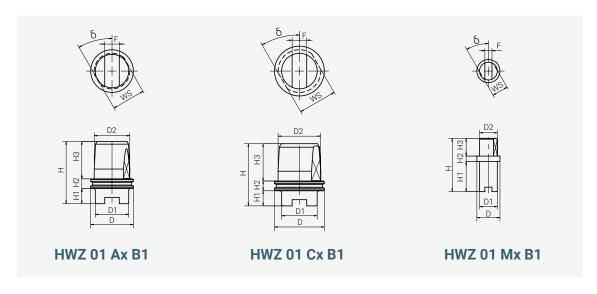
ACCESSORI PER UGELLI DISCAGLIATORI

ALLINEAMENTO DEGLI UGELLI

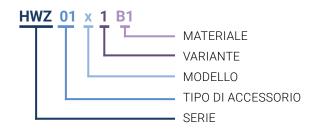
I bocchelli di allineamento, con superfici piane chiave opportunamente orientate in base all'angolo α, vengono utilizzate per un corretto allineamento dei nippli di saldatura su un collettore, in modo che gli ugelli producano getti piatti con un determinato angolo di offset δ , come mostrato qui sotto.

L'orientamento della superficie piana degli ugelli di disincrostazione del ventilatore piatto PNR è sempre costante $\beta = 15^{\circ}$


Gli angoli di offset risultanti degli ugelli installati sul collettore sono:


1)
$$\alpha = -30^{\circ} \rightarrow \beta = +15^{\circ} \rightarrow \delta = -15^{\circ}$$

2)
$$\alpha = -15^{\circ} \rightarrow \beta = +15^{\circ} \rightarrow \delta = 0^{\circ}$$


2)
$$\alpha = 0^{\circ} \rightarrow \beta = +15^{\circ} \rightarrow \delta = +15^{\circ}$$

NOTA: Le rotazioni in senso orario sono considerate positive, mentre quelle in senso antiorario sono considerate negative.

CODIFICA PER LA SERIE HWZ

B1 = SS 303
1 =
$$\delta \rightarrow -15^\circ$$
; 2 = $\delta \rightarrow 0^\circ$; 3 = $\delta \rightarrow +15^\circ$
A = MINI; C = STD; M = MICRO
01 = Bocchello allineamento
HWZ

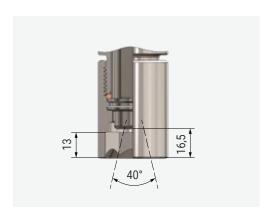
CODICE DI PRODOTTO	ORIENTAMENTO UGELLO RISULTANTE	δ	D	D1	D2	н	H1	H2	Н3	ws	F
HWZ 01M1 B1	-15°	-30°	13	10	10	30	17	3	10	9	4
HWZ 01M2 B1	0°	-15°	13	10	10	30	17	3	10	9	4
HWZ 01M0 B1	+15°	0°	13	10	10	30	17	3	10	9	4
HWZ 01A1 B1	-15°	-30°	24	18,8	20	35	8,5	5,5	21	18,8	8
HWZ 01A2 B1	0°	-15°	24	18,8	20	35	8,5	5,5	21	18,8	8
HWZ 01A0 B1	+15°	0°	24	18,8	20	35	8,5	5,5	21	18,8	8
HWZ 01B1 B1	-15°	-30°	28	20	24	35	8,5	5,5	21	21,7	8
HWZ 01B2 B1	0°	-15°	28	20	24	35	8,5	5,5	21	21,7	8
HWZ 01M0 B1	+15°	0°	28	20	24	35	8,5	5,5	21	21,7	8

Nota: gli ugelli di allineamento non sono disponibili per la gamma HV/AX

KIT DI SMONTAGGIO

La punta dell'ugello è fortemente fissata al nipplo e la sua rimozione non è sempre facile e può causare danni a entrambe le parti. Il kit di smontaggio consente una presa sicura dell'ugello e facilita l'applicazione della resistenza alla trazione necessaria per estrarlo dall'interno del nipplo, per la sostituzione o l'ispezione. Il kit è venduto separatamente.

HWZ 05A0B1	HWZ 05C0B1
PER U	GELLI
HW/AA	HW/AH
HW/AB	HW/AK
HX/GB	HX/GK


Nota: il kit di smontaggio non è disponibile per le gamme HW/AM e HV/AX

KIT ESAGONALE INCORPORATO

Il dado esagonale incorporato viene utilizzato:

- per proteggere l'ugello da schegge a breve altezza di spruzzo;
- per facilitare l'avvitamento del dado a passi ridotti.

VAW C075B1	VAW MM18B1	VAW D100B1
	PER UGELLI	
HW/AA HW/AB HX/GB	HW/AM	HW/AH HW/AK HV/AX HX/GK

NOTE

I nostri prodotti e le loro prestazioni sono oggetto di continua revisione e modifica per stare al passo con l'evoluzione della tecnologia. Di conseguenza le informazioni tecniche fornite in questo catalogo sono solo indicative e non sono vincolanti. I contenuti offerti da questo documento sono redatti con la massima cura/diligenza, e sottoposti ad un accurato controllo. PNR tuttavia, declina ogni responsabilità, diretta e indiretta, nei confronti dei clienti, per eventuali imprecisioni, errori, omissioni, danni (diretti, indiretti, consequenti, punibili e sanzionabili) derivanti dai suddetti contenuti.

Questo documento può includere imprecisioni tecniche o errori tipografici e può essere periodicamente modificato e/o aggiornato senza preavviso. Pertanto, se necessitate di informazioni tecniche più dettagliate e/o di prodotti per applicazioni speciali che non sono presenti nei cataloghi o sul nostro sito web, vi preghiamo di non esitare a contattare i nostri uffici prima di inoltrare un ordine.

GARANZIA DI PRODOTTO

I prodotti PNR saranno sostituiti e/o riparati a discrezione di PNR a titolo gratuito se riscontrati effettivamente non conformi per difetti di fabbricazione, di imballaggio o per errate modalità di etichettatura. La garanzia di conformità si applicherà solo se PNR riceverà per iscritto dal cliente la segnalazione di non conformità entro 30 giorni dalla data dell'installazione del prodotto oppure entro un anno dalla data di spedizione. Il costo della riparazione oppure il costo sostituzione del prodotto con uno identico o equivalente saranno l'intera responsabilità di PNR e il rimedio esclusivo dell'acquirente per qualsiasi violazione di garanzia e PNR non potrà più essere ritenuta responsabile per eventuali danni alle persone o perdite derivanti da malfunzionamenti del prodotto.

La presente garanzia non copre problemi o danni risultanti se i nostri prodotti sono conservati, montati, o installati in modo scorretto. usati per uno scopo diverso da quello previsto, manomessi o utilizzati in modo non conforme alle istruzioni relative al prodotto come, a titolo esemplificativo e non esaustivo:

- funzionamento a pressioni superiori rispetto a quelle indicate nella tabella delle prestazioni pubblicata nel catalogo o nella scheda prodotto;
- funzionamento con o esposizione a fluidi contenenti particelle abrasive che possono causare una usura erosiva:
- funzionamento con o esposizione a fluidi che causano aggressività chimica sul materiale di costruzione dell'ugello:
- danni meccanici agli orifizi, al nipplo o al corpo dell'ugello causati da maneggio o assemblaggio improprio.

In tutti i casi sopra riportati, il cliente dovrà accettare una riduzione del ciclo di vita del prodotto oppure prestazioni inferiori a quelle dichiarate nel catalogo da PNR.

Le richieste di intervento in garanzia dovranno essere rivolte direttamente a PNR stilando un rapporto precauzionale o reclamo sul difetto di conformità riscontrato che deve essere inoltrato via email all'indirizzo: quality@pnr.it.

Procedura di reso:

- 1. PNR verifica e accerta che il prodotto oggetto del reclamo è effettivamente coperto dal periodo di garanzia stabilito e lo comunica per iscritto al cliente;
- 2. il cliente chiede per iscritto a PNR l'autorizzazione a rendere il prodotto;
- 3. PNR autorizza per iscritto il cliente alla restituzione del prodotto che dovrà essere reso dal cliente nella sua confezione originale;
- 4. il prodotto oggetto del reclamo deve essere reso con modalità che PNR comunicherà al cliente per iscritto e le spese di trasporto della merce resa saranno interamente a carico di PNR.

Per riparare il prodotto, PNR ha la facoltà, a propria discrezione, di utilizzare parti nuove, rinnovate o usate in buone condizioni di funzionamento. Nessun venditore, agente o dipendente di PNR è autorizzato ad apportare modifiche, estensioni o aggiunte alla presente Garanzia.

COPYRIGHT

Tutti i contenuti (testi, immagini, grafica, layout ecc.) presenti in questo documento appartengono a PNR Italia S.r.l. E' proibita la riproduzione, anche parziale, in ogni forma o mezzo, senza espresso permesso scritto di PNR Italia S.r.l..

CODICI DEI MATERIALI

A 1	Acciaio al carbonio	
A2	Acciaio alta velocità	
A8	A8 Acciaio zincato	
Α9	Acciaio nickelato	
B1	AISI 303 acciaio inox	
B2	AISI 304 acciaio inox	
B21	AISI 304L acciaio inox	
В3	AISI 316 acciaio inox	
B31	AISI 316L acciaio inox	
C1	AISI 420 acciaio inox temprato	
C2	AISI 416 acciaio inox temprato	
D1	Cloruro di polivinilidene (PVC)	
D2	Polipropilene (PP)	
D3	Poliammide (PA)	


Polipropilene caricato fibravetro
PP caricato fibravetro
Polietilene alta densità (HDPE)
Floruro di polivinilidene (PVDF)
EPDM
Politetrafluoroetilene (PTFE)
PTFE (15% caricato fibravetro)
Resina acetalica (POM)
Viton
Gomma sintetica (NBR)
Carburo di tungsteno
Ceramica
Inserto in rubino, corpo AISI 303
Ghisa

H1	Titanio
L1	Monel 400
L2	Incolloy 825
L8	Hastelloy C276
P6	Stirene acrilo-butadienico (ABS)
P8	EPDM 40 Shore
T1	Ottone
T2	Ottone cromato
Т3	Rame
T5	Bronzo
Т8	Ottone nichelato
T81	Ottone nichelato chimico
V 1	Alluminio
V 7	Alluminio nichelato chimico

LEGENDA DELLE ABBREVIAZIONI

AE	Inlet air capacity	Nmc/min
AU	Outlet air capacity	Nmc/min
CL	Spray jet deflection angle	degrees
D	For round exit hole: hole diameter For not round exit holes: equivalent round hole diameter	mm
D1	Smallest passage diameter	mm
DE	Liquid inlet diameter	mm
DF	Flange nominal size for ANSI/ASME flanges	inch
DIA	Diametro esterno	mm
DN	Flange nominal size for UNI/DIN flanges	mm
DU	Diametro in uscita del liquido	mm
DX	Diametro interno del nipplo	mm
FF	Diametro esterno della flangia	mm
G	Diameter measured between fixing holes centers	mm
H, H1, H2	Altezza	mm

L, L1	Lunghezza	mm
LF	Lunghezza del tubo	m
LP	Pressione massima di utilizzo	bar
LQ	Capacità massima	lpm
LT	Temperatura massima di utilizzo	°C
NR	Numero degli orifizi	-
QC	Quick coupling connection	-
RA	Raggio	mm
RF	Attacco femmina parallelo BSPP	inch
RG	Tapered male thread BSPT	inch
S	Thickness	mm
SQ	Square bar size	mm
W	Peso	g, Kg
WS	Wrench size	mm

PNR ITALIA HA CERTIFICATO IL SUO SISTEMA DI QUALITÀ CON DNV SECONDO LE NORME ISO 9001/2015

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL ISO 9001:2015

SIAMO PRESENTI IN TUTTO IL MONDO.

PNR ITALIA SRL

Via Gandini 2, 27058 Voghera (PV) Italia Per maggiori informazioni visitate www.pnr.eu

