

ENROLLADORES A MOTOR

ENROLLADORES A MOTOR

ÍNDICE

Enrolladores a motor	3
Generalidades	4
Cálculos	5
Ejemplos de disposición en la instalación de enrolladores	6
Determinación de la sección de cable necesaria	7
Códigos de referencia	9
Reenvíos	. 11
Rodillos de reenvío y guiado	. 13
Embocaduras de alimentación	. 14

Cajas de bornes	15
Mallas tiracables	16
Rodillos apoyacables	17
Abrazaderas de cables	17
Disposición en montaje adosado	18
Instalaciones de referencia	19
Cuestionario	21
Notas	22

APLICACIÓN

Los enrolladores a motor se emplean para consumidores móviles para el enrollado automático de cables flexibles de energía o mando/control para las siguientes áreas de aplicación:

- · Grúas de pórtico y giratorias de todo tipo
- · Puentes de transbordo de contenedores
- · Grúas apiladoras
- · Grúas de pórtico fijas
- · Grúas de obras
- Instalaciones de embarque
- Grúas de imán y de pulpo
- Polipastos eléctricos
- Plataformas transbordadoras
- Apiladoras
- Desarenadores longitudinales de sólidos flotantes en estaciones depuradoras de aguas
- Instalaciones de recubrimiento

Nuestros enrolladores a motor cumplen los reglamentos de la Asociación de Ingenieros Electrotécnica (VDE) y de las Mutualidades Profesionales (UVV) de Alemania.

APLICACIONES ESPECIALES

- Enrolladores para instalación a bordo de embarcaciones marinas o uso en los trópicos
- Enrolladores para condiciones de explotación agresivas (baños ácidos, talleres de galvanizado)
- Enrolladores para la transmisión de corriente de medición, corriente de señales o alta frecuencia
- Enrolladores para la transmisión de señales ópticas (cables de fibra óptica)
- Enrolladores para la alimentación de medios líquidos o gaseosos (enrolladores de mangueras)
- Enrolladores para herramientas o interruptores de mando de altura variable en aparejos de elevación

CUERPOS DE ANILLOS ROZANTES

Los cuerpos de anillos rozantes de VAHLE se pueden suministrar en las siguientes versiones:

• Baja Tensión (BT): Tensiones 230 V o 500 V

Intensidades desde 10 A hasta 1000 A

• Media Tensión (MT): Tensiones de 10 kV o 20 kV

Intensidad 240 A

Bajo demanda son posibles tensiones superiores. Las carcasas de los cuerpos de anillos rozantes están blindadas y poseen el grado de protección IP 55 (bajo demanda son posibles grados de protección superiores).

Si así se desea, es posible equipar todos los cuerpos de anillos rozantes con sistemas de caldeo de reposo (de serie en las versiones para media tensión). Se recomienda montar un sistema de caldeo en reposo a temperaturas inferiores a $-25\,^{\circ}$ C o cuando se registren fuertes oscilaciones de temperatura en poco tiempo.

Se pueden suministrar así mismo cuerpos de anillos rozantes especiales para la transmisión de datos vía Profibus a 1,5 Mbits/s.

Para la transmisión de señales ópticas se utilizan cables de fibra óptica. La transición entre la parte rotativa (cuerpo del tambor) y la parte fija corre a cargo del denominado transmisor de fibra óptica. Éste se adapta a la longitud de enrollado del cable así como al número de cables de fibra óptica.

La conexión se realiza mediante conectores. El transmisor se monta bien justo después del cuerpo de anillos rozantes o está alojado en su propia carcasa, en cualquier caso siempre dentro del espacio calefactado.

GENERALIDADES

ACCIONAMIENTO

Utilizamos los siguientes accionamientos:

- Motor trifásico con acoplamiento magnético
- · Motor trifásico con convertidor de frecuencia independiente
 - con par motor constante
 - con par motor variable
- Motor trifásico con convertidor de frecuencia integrado
 - con par motor constante
 - con par motor variable
- Motor de reposo con/sin ventilador independiente

Todos los accionamientos actúan siempre en la dirección de enrollado. El recorrido se realiza desenrollando el cable/la manguera del cuerpo del enrollador venciendo el par motor. El accionamiento se adapta a todas a las velocidades de traslación del equipo hasta el reposo. Un freno impide el desenrollado incontrolado del cable/la manguera cuando el accionamiento está desconectado. Si así se desea, se puede incorporar a los accionamientos un sistema de caldeo eléctrico.

CUERPO DEL ENROLLADOR

- Los cuerpos de enrollador monoespiral se pueden fabricar en ejecución soldada y atornillada. En la construcción atornillada es posible variar el ancho del tambor y, por tanto, adaptarlo a diferentes diámetros de cable/manguera. El diámetro del tambor se adapta al radio mínimo de curvatura del cable/manguera.
- El cuerpo del enrollador de tambor ancho (al azar) se fabrica de chapa de acero galvanizada embutida.

También disponibles:

- Cuerpos de enrollador de arrollado en doble hélice para enrollar en paralelo dos cables/mangueras de idéntico diámetro
- Arrollado en 3-2-3 capas
- Arrollado cilíndrico con bobinador

DESENROLLADO DEL CABLE/MANGUERA

El desenrollado del cable/manguera se realiza conforme a la representación en los dibujos acotados. Si así se desea, es posible, sin sobreprecio alguno, cambiar la dirección de desarrollo, incluso a posteriori, sin grandes esfuerzos.

INTERRUPTOR DE FINAL DE CARRERA

Para desconectar el motor del mecanismo de traslación o de elevación al desarrollar la penúltima o bien última vuelta de cable/manguera se pueden equipar opcionalmente con interruptores de final de carrera todos los enrolladores. Las levas de conmutación se han concebido para máx. 5A y 250 V. El interruptor de final de carrera se encuentra bien dentro de la carcasa del cuerpo de anillos rozantes o fuera, en su propia carcasa (accionado por una cadena de acero inoxidable). Como alternativa se pueden montar también otros interruptores de final de carrera, detectores de proximidad o encoders.

PROTECCIÓN SUPERFICIAL

De serie, los cuerpos de enrollador se suministran en ejecución galvanizada. La carcasa de los cuerpos de anillos rozantes y el módulo de accionamiento se entregan pintados con una mano de imprimación y una mano de recubrimiento en color RAL 7040. Se pueden suministrar otras ejecuciones (p. ej., cuerpo de enrollador galvanizado en caliente o de acero inoxidable).

INSTRUCCIONES DE EMPLEO

A cada suministro se adjuntan las instrucciones de empleo necesarias para el montaje y la puesta en servicio.

MONTAJE

En la colocación del enrollador a motor sobre el equipo consumidor, asegurarse de que el bastidor de montaje o bien el reductor de la base queden apoyados sobre una placa nivelada. Para garantizar un enrollado y desenrollado perfectos, se debe realizar una alineación del tambor con respecto a dos lados, es decir, se debe alinear el eje del enrollador horizontal y perpendicularmente a la dirección de traslación.

Debe quedar garantizada la disipación del calor emitido por el motor de accionamiento y no debe ser obstaculizada por capotas protectoras o elementos semejantes. El cable/la manguera se debe colocar sobre el cuerpo del enrollador teniendo presente(s) la(s) vuelta(s) de seguridad para la protección antitirones. Las conexiones eléctricas en los anillos rozantes y en el punto de alimentación deben ser realizadas por personal especializado conforme a las normas y reglamentos vigentes.

Una vez realizada con éxito la conexión del motor de accionamiento, el enrollador queda operativo. El motor de accionamiento se debe conectar de tal modo que el cuerpo del enrollador gire en el sentido de arrollado. La dirección de desarrollo del enrollador está identificada por una flecha.

ACCIONES DE PREVENCIÓN DE ACCIDENTES

Conforme a la Directiva CE N.º 2006/42/CE, deseamos hacer hincapié en que las piezas giratorias, por ejemplo, el cuerpo del enrollador deben protegerse debido al peligro de accidente.

GARANTÍA

Otorgamos garantía conforme a las condiciones generales de suministro para productos y servicios de la industria electrotécnica.

ACCESORIOS (A PARTIR DE LA PÁGINA 11)

- Reenvío de rodillos con o sin monitorización de tensión de tracción
- Reenvíos de polea con o sin rodillos transversales
- · Rodillos de reenvío y guiado
- Embocaduras de alimentación
- Cajas de bornes para media tensión (son posibles ejecuciones especiales, p. ej., con cables de fibra óptica)
- · Mallas tiracables
- · Rodillos apoyacables y abrazaderas de cables

CÁLCULOS

CÁLCULO DE LA SECCIÓN DE CABLE NECESARIA

- 1. Determinación de la intensidad de la corriente a transportar y de la sección del cable
- 2. Comprobación de la caída de tensión
- 3. Selección del cable

1. CÁLCULO DE LA INTENSIDAD DE LA CORRIENTE A TRANSPORTAR Y DE LA SECCIÓN DEL CABLE

Las intensidades nominales (I_N) de los distintos motores se totalizan, tras aplicar los factores de reducción (f_{ED} , f_{T} , f_1 , f_2), para obtener una intensidad permanente equivalente (I_D). Dado el caso se debe ejecutar varias veces el procedimiento de cálculo a continuación descrito.

$$I_{D} = \frac{I_{N}}{f_{ED} \cdot f_{r} \cdot f_{1} \cdot f_{2}}$$
 [A]

${f I}_{N}$: RECOMENDACIÓN PARA EL CÁLCULO DE LA INTENSIDAD NOMINAL

De modo aproximado, se aplica lo siguiente, p. ej., para instalaciones de grúas: Totalización de las intensidades nominales de los dos accionamientos más potentes y una carga base.

$$I_{N} = I_{N1} + I_{N2} + I_{G}$$
 [A]

Si solo se conoce la potencia:

$$I_D = \frac{P \cdot 1000}{\sqrt{3 \cdot U \cdot (\cos \phi \cdot \eta)}} \cdot f_G [A]$$

EXPLICACIÓN DE LOS SÍMBOLOS DE LAS FÓRMULAS

P = Potencia [kW]

U = Tensión [V]

L = Longitud de cable total [m]

Z = Impedancia eficaz $[\Omega/km]$

 ΔU = Recomendación $\Delta U < 3\%$

 $\cos \phi$ = 0,6 de la Tabla 1 (página 7)

 $\cos \phi \cdot \eta = 0.8$ aproximado

 f_{g} = 1,0 si se conoce la potencia individual

 f_{g} = 0,9 solo se conoce la potencia total

f_{FD} = Factores de conversión para servicio intermitente (página 7)

2. COMPROBACIÓN DE LA CAÍDA DE TENSIÓN

Cálculo aproximado para determinar la caída de tensión ΔU :

$$\Delta U = \sqrt{3} \cdot L \cdot I_A \left(\frac{Z}{1000}\right)$$
 [V]

I_A: CÁLCULO DE LA INTENSIDAD TRANSITORIA DE ARRANQUE

El orden de clasificación del tamaño de los motores se debe determinar no en base a las potencias de éstos, sino en base a la magnitud de la intensidad transitoria de arranque, es decir: Un motor con rotor en jaula de baja potencia, pero de intensidad transitoria de arranque elevada, puede estar ubicado en el orden de clasificación antes de un motor con rotor de anillos rozantes de mayor potencia.

Recomendación:

$$I_{A} = I_{A1} + I_{N2}$$
 [A]

Nota:

$$I_A = X + I_N$$
 [A]

- I_{A1}: 1. Motor con la intensidad transitoria de arranque más grande
- I_{N2}: 2. Motor con la intensidad nominal más grande

Motores con rotor en jaula: $X \approx 6$

Motores con rotor de

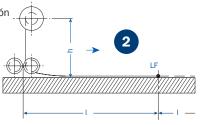
anillos rozantes: $X \approx 2$

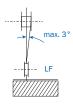
Accionamientos de velocidad variable por regulación de frecuencia: $X \approx 1,1$

3. SELECCIÓN DEL CABLE

Se deben emplear cables enrollables en tambor conforme a DIN/VDE 0298. Para ello tener presentes los radios de curvatura mínimos admisibles (véase página 8). Debido a la necesaria resistencia mecánica, no se deben elegir cables de mando/control con secciones inferiores a 1,5 mm². En el caso de cables de mando/control con numerosos conductores, recomendamos prever una serie de conductores de reserva.

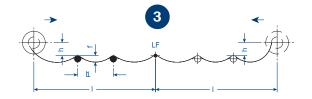
- f_T = Factor de conversión para temperatura ambiente elevada. Para temperaturas ambiente superiores a 30 °C son de aplicación los factores de conversión en la página 7.
- f₁ = Para el factor de conversión para arrollado en varias capas para la intensidad de la corriente transportada en función del tipo de enrollado en tambor véase página 7. Estos factores de conversión son de aplicación a cables totalmente enrollados de modo permanente. En el caso de cables totalmente enrollados solo temporalmente se pueden realizar los cálculos con factores reducidos.
- f₂ = Factor de conversión para cables con muchos conductores. En el caso de cables con muchos conductores, se deben tener presentes los factores de la página 7. Son de aplicación para secciones hasta 10 mm²
- I_A = Intensidad transitoria de arranque [A]

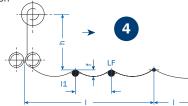

EJEMPLOS DE DISPOSICIÓN EN INSTALACIÓN ENROLLADORES


ENROLLADOR EN EL EQUIPO MÓVIL

Depósito del cable en el suelo o sobre una base de apoyo continua

Desenrollado del cable horizontalmente en una o dos direcciones de traslación

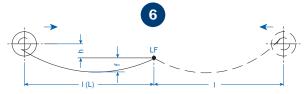




ENROLLADOR EN EL EQUIPO MÓVIL

Depósito del cable sobre apoyos (I1 = 1 m) o bien sobre rodillos o sobre apoyos lisos redondeados (I1 = 1 hasta 3 m)

Desenrollado del cable horizontalmente en una o dos direcciones de traslación


ENROLLADOR FIJO EN SU UBICACIÓN

(Punto fijo del cable en el equipo móvil), desarrollo del cable horizontalmente en una o dos direcciones de traslación mediante rodillos o apoyos lisos

ENROLLADOR EN EL EQUIPO MÓVIL (6) O ENROLLADOR EN SU UBICACIÓN FIJA (7) (PUNTO FIJO DEL CABLE EN EL EQUIPO MÓVIL)

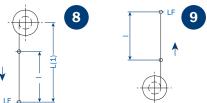
Libre desenrollado del cable horizontalmente en una o dos direcciones de traslación. Si con desarrollo en una dirección de traslación la longitud de cable libremente colgante "L" es mayor que "l", "L" es determinante para la flecha "f"

EXPLICACIÓN DE LOS SÍMBOLOS (EJEMPLO 1-7)

- I = Longitud de cable arrollable máxima debido a las condiciones de explotación [m] (con desenrollado del cable en dos direcciones de traslación = media longitud de vía de traslación del equipo móvil)
- L = longitud máx. del cable [m] entre el punto fijo del enrollador y el punto fijo del cable
- h = Altura de instalación = distancia del apoyo del cable o bien del punto fijo del cable hasta el centro del enrollador [m]
- LF = Punto fijo del cable
- f = Flecha máx. del cable [m], referida al punto fijo del cable "LF"
- I1 = Distancia entre rodillos o apoyos [m]

NOTA

Para los ejemplos de disposición 2, 4 y 5 y para las aplicaciones especiales que vayan más allá de éstas, los enrolladores deben ser determinados por nuestra parte sobre la base de los datos que nos hayan sido facilitados en el Cuestionario (página 21).


EXPLICACIÓN DE LOS SÍMBOLOS (EJEMPLO 8 Y 9)

- I = Longitud de cable arrollable en explotación (altura de elevación) [m]
- L = Longitud máxima de cable colgante del enrollador [m].
 Además, se debe tener presente el peso adicional tal vez existente
 (p. ej., debido al interruptor de mando).
- LF = Punto fijo del cable

MODO ELEVACIÓN

Desenrollado del cable verticalmente o inclinado hacia abajo (8)

Desenrollado del cable verticalmente o inclinado hacia arriba (9)

Para la determinación del enrollador de cable resulta decisiva la longitud "colgante".
 Además, se debe tener presente el peso adicional tal vez existente (debido al interruptor de mando o elemento semejante).

CÁLCULO DE LA SECCIÓN DE CABLE NECESARIA

TABLA 1: CORRIENTE DE CARGA TRANSPORTABLE PARA LOS CABLES NSH...Y NTS... CON EL CABLE ESTIRADO. TEMPERATURA DE SERVICIO EN EL CONDUCTOR: MÁX. 90°C.

Sección nominal	Temperatura ambiente 30°C	Factores para s	ervicio intermiten	te con un factor d	e marcha (f.m.)	Z [Ω/km]
[mm ²]	Intensidad permanente soportable [A]	60 %	40%	25%	15%	
1,5	23	1,00	1,00	1,00	1,00	8,770
2,5	30	1,00	1,00	1,04	1,07	5,310
4	41	1,00	1,03	1,05	1,19	3,360
6	53	1,00	1,04	1,13	1,27	2,250
10	74	1,03	1,09	1,21	1,44	1,370
16	99	1,07	1,16	1,34	1,62	0,888
25	131	1,10	1,23	1,46	1,79	0,547
35	162	1,13	1,28	1,53	1,90	0,443
50	202	1,16	1,34	1,62	2,03	0,344
70	250	1,18	1,38	1,69	2,13	0,258
95	301	1,20	1,42	1,74	2,21	0,205
120	352	1,21	1,44	1,78	2,26	0,174
150	404	1,22	1,46	1,81	2,30	0,154
185	461	1,23	1,48	1,82	2,32	0,136
240	540	1,23	1,49	1,85	2,36	0,119

TABLA 2: FACTORES DE CONVERSIÓN PARA LA DEPENDENCIA DE LA INTENSIDAD DE CARGA MÁXIMA EN FUNCIÓN DE LA TEMPERATURA AMBIENTE

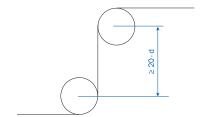
Temperatura ambiente [°C]	25	30	35	40	45	50	55	60	65	70
Factor de conversión f _r	1,05	1,00	0,95	0,89	0,84	0,77	0,71	0,63	0,55	0,45

TABLA 3: FACTORES DE CONVERSIÓN PARA LA DEPENDENCIA DE LA INTENSIDAD DE CARGA MÁXIMA EN FUNCIÓN DEL NÚMERO DE CAPAS EN EL ENROLLADOR

Número de capas completas LZ en el enrollador	1 ⁽¹⁾	2	3	4
Factor de conversión f ₁	0,80	0,61	0,49	0,42

TABLA 4: FACTORES DE CONVERSIÓN PARA CABLES DE MUCHOS CONDUCTORES CON SECCIONES DE CONDUCTOR DE HASTA 10 MM²

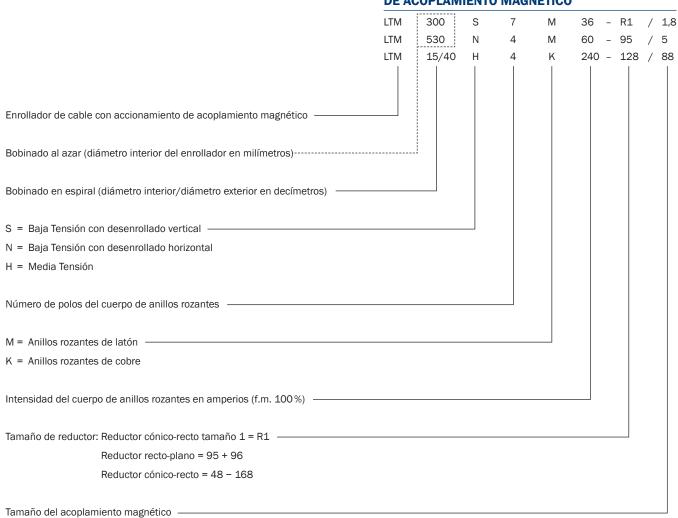
Número de conductores que soportan carga	5	7	10	14	19	24	40	61
Factor de conversión f ₂	0,75	0,65	0,55	0,50	0,45	0,40	0,35	0,30


TABLA 5: RADIOS DE CURVATURA MÍNIMOS ADMISIBLES

Tipo de cable	Tensión nominal has	ta 0,6/1 kV		Tensión nominal superior a 0,6/1 kV	Observación
Cables flexibles	Diámetro exterior del	cable o espesor del ca	ble plano		En los tipos cons-
	más de 8 hasta 12	más de 12 hasta 20	más de 20		tructivos de cable
con tendido fijo	3 x d	4 x d	4 x d	6 x d	para los cuales son posibles varios tipos
con libre movimiento	4 x d	5 x d	5 x d	10 x d	de uso, dado el caso,
con entrada de cables	4 x d	5 x d	5 x d	10 x d	es preciso consultar al
con guiado forzoso (1)	5 x d	5 x d	6 x d	12 x d	fabricante. (2)
Reenvío de rodillos	7,5 x d	7,5 x d	7,5 x d	15 x d	

Para cables PUR-HF de 0,6/1 kV en el caso de guiado forzoso, como durante el funcionamiento del enrollador, el radio de curvatura mínimo admisible es 6 x d.

El tramo recto entre dos curvaturas con un reenvío en S o un reenvío hacia otro plano debe ser al menos igual a 20 veces el diámetro del cable.


Reservado el derecho a introducir cambios destinados a avances tecnológicos.

Como durante el funcionamiento del enrollador
 La capacidad para este modo de funcionamiento debe estar asegurada mediante características de montaje especiales.

CODIFICACIÓN

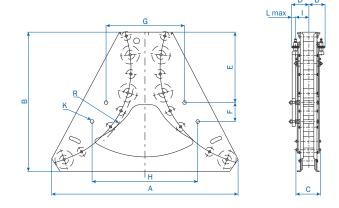
ENROLLADORES A MOTOR CON ACCIONAMIENTO DE ACOPLAMIENTO MAGNÉTICO

CODIFICACIÓN

ENROLLADORES A MOTOR CON CONVERTIDOR DE FRECUENCIA

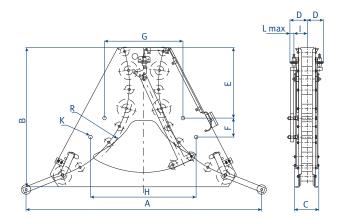
	CO	IN CON	VL	N I I	DU	ו אי	JE F	KEC	UEN	CIA			
	LT	420		S	24	М	36	_	68 /	FMP	4	G	
	LT	530		Ν	4	M	60	-	88 /	FK	4	J	
	LT	15/40		Н	4	K	240	- 3	128 /	FP	6	М	-S
Enrollador de cable con accionamiento con convertidor de frecuencia													
Bobinado al azar (diámetro interior del enrollador en milímetros)													
Bobinado en espiral (diámetro interior/diámetro exterior en decímetros)													
S = Baja Tensión con desenrollado vertical													
N = Baja Tensión con desenrollado horizontal													
H = Media Tensión													
Número de polos del cuerpo de anillos rozantes													
M = Anillos rozantes de latón —													
K = Anillos rozantes de cobre													
Intensidad del cuerpo de anillos rozantes en amperios (f.m. 100%)													
Tamaño de reductor —													
FMK = Convertidor de frecuencia con par constante montado directamente acoplado	o al m	notor —											
(siempre de la marca Getriebebau Nord)													
FMP = Convertidor de frecuencia con par variable montado directamente acoplado a	al mo	tor											
(siempre de la marca Getriebebau Nord)													
FK = Convertidor de frecuencia con par constante													
FP = Convertidor de frecuencia con par variable													
Número de polos del motor													
Tamaño del motor													
S = Convertidor de frecuencia marca Siemens Sinamics													

Sin marcado = Marca Getriebebau Nord


REENVÍOS

REENVÍOS DE RODILLOS

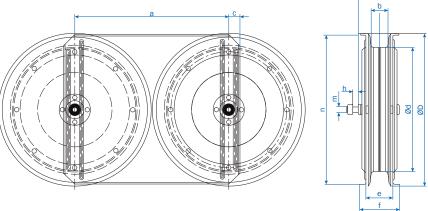
Para bobinado en espiral


Para tensiones de hasta 1000 V y desarrollo de cables por 2 lados

Para tensiones superiores a 1000 V: r min. = 15 x diámetro del cable

REENVÍO DE RODILLOS SIN PALANCA DE MANIOBRA

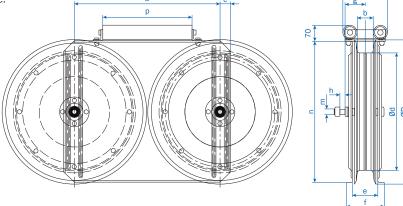
Tipo	≈kg	A	В	C	D	E	F	G	Н	K	R	Ø máx. cable	Referencia
R 6	85	1140	860	145	95	360	125	430	598	M 16	600	55	924994
R 9	150	1595	1200	180	130	606	164	670	900	M 20	900	75	924995
R 12	250	2100	1660	210	130	560	500	740	1200	M 20	1200	83	924996


REENVÍO DE RODILLOS CON MONITORIZACIÓN DE TENSIÓN DE TRACCIÓN

Tipo	≈kg	A	В	С	D	Е	F	G	Н	1	К	R	Ø máx. cable	N.º de pedido con interruptor de pos.	N.º de pedido sin interruptor de pos.
RZ 6	95	1700	930	185	123	360	125	430	598	92,5	M 16	600	55	926576	924742
RZ 9	160	2175	1240	220	140	606	164	670	900	111	M 20	900	75/60(1)	925073	925002
RZ 12	260	2600	1710	220	140	560	500	740	1200	111	M 20	1200	83/80(1)	926573	925003

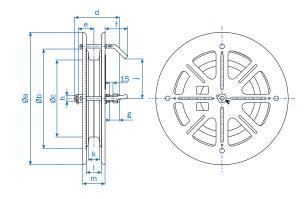
REENVÍOS

REENVÍO DE POLEA SU

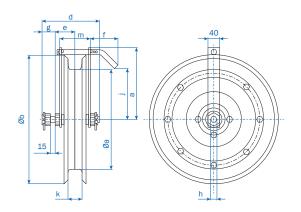

El reenvío de polea SU se emplea en enrolladores que bobinan en espiral. Sirve para el reenvío del cable del enrollador situado encima y para rebasar el punto de alimentación

Tipo	Peso kg	а	b	С	Ø d	Ø D	е	f	g	h	m	n	0	р	Ø máx. cable	Referencia
SU 1	48	455	70	32,5	350	450	114	170	85	50	M 24	445	180	315	22	901635
SU 2	76	655	70	47,5	503	650	114	170	85	50	M 24	640	180	400	32	901636
SU 3	90	785	70	80	663	780	114	170	85	50	M 24	770	180	500	39	901637
SU 4	120	905	75	80	783	900	114	170	85	50	M 24	890	180	600	50	901638

REENVÍO DE POLEA SU-R


El reenvío de polea SU-R con rodillo transversal se emplea en enrolladores con bobinado cilíndrico. Sirve para el reenvío del cable del enrollador montado encima y para rebasar la embocadura de alimentación. La altura de colocación del enrollador respecto al reenvío debe elegirse de tal modo que se respete una tracción oblicua con un ángulo máx. de 3° con el fin de garantizar el perfecto bobinado del cable.

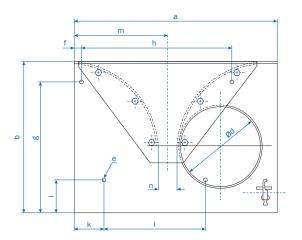
Tipo	Peso kg	а	b	С	Ød	Ø D	е	f	g	h	m	n	0	р	Ø máx. cable	Referencia
SU-R 1	53	455	70	32,5	350	450	114	170	85	50	M 24	445	180	315	22	901630
SU-R2	84	655	70	47,5	503	650	114	170	85	50	M 24	640	180	400	32	901631
SU-R3	105	785	70	80	663	780	114	170	85	50	M 24	770	180	500	39	901632
SU-R4	140	905	75	80	783	900	114	170	85	50	M 24	890	180	600	50	901633

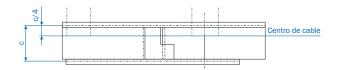

RODILLOS DE REENVÍO Y GUIADO

Los rodillos de reenvío y de guiado se utilizan cuando no es posible realizar el desenrollado del cable directamente desde el tambor. El diámetro de los rodillos debe ser de al menos 15 veces el diámetro del cable.

SERIE DE TIPOS URN

Tipo	Peso kg	Øа	Øb	Øс	d	е	f	g	h	j	k	1	m	Referencia
VURN 350	23	600	450	350	195	60	99	42	M 20	180	50	58	98	970421
VURN 500	42	800	650	530	240	84	85	57	M30	280	50	82	112	970422
VURN 660	52	900	780	660	240	86	75	55	M30	344	70	90	120	970423




SERIE DE TIPOS LRN

Tipo	Peso kg	Øа	Øb	Øс	d	е	f	g	h	j	k	1	m	Referencia
LRN 350	16	253	450	350	183	70	97	45	M 24	180	45	-	105	970424
LRN 500	24	360	650	530	240	82	88	59	M 30	280	50	-	116	970425

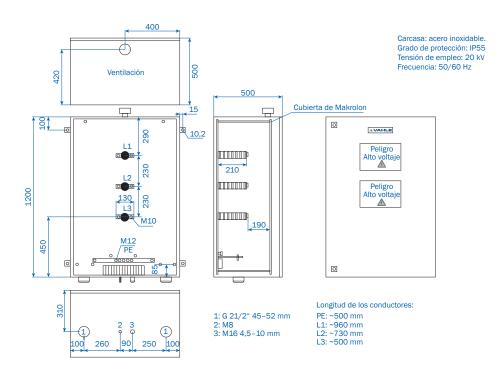
EMBOCADURAS DE ALIMENTACIÓN

Para tensiones de hasta 1000 V y desarrollo del cable hacia 2 lados Para velocidades medias de traslación y para rebasamiento frecuente del punto del cable.

Tipo	Peso kg	а	b	С	d/r	е	f	g	h	i	k	I	m	n	Ø máx. cable	Referencia
ETZ 3	15	650	530	106	275	14	40	405	400	220	120	300	270	60	34	921380
ETZ 4	28	900	700	146	400	18	40	550	740	220	210	400	410	80	50	921390
ETZ 5	52	1220	900	208	500	18	40	780	900	220	180	600	480	100	62	921400
ETZ 7	100	1760	1200	208	700	18	200	1080	1100	220	350	800	750	100	80	921410
															~60(1)	
ETZ 9	130	2070	1475	216	900	22	125	1325	1820	275	1250	695	960	120	90	921720
															~70(1)	

CAJAS DE BORNES

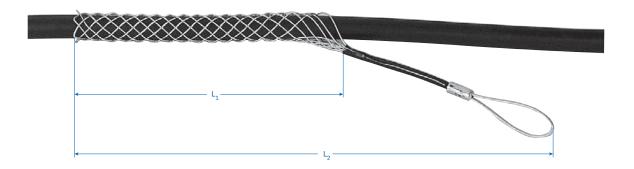
CAJA DE BORNES 10 KV


Grado de protección IP 54 Carcasa de acero inoxidable

Tipo	Peso kg	Referencia
KKU-10K-XXXX-UU-E-0000-P55-G683-0755320	50	970579

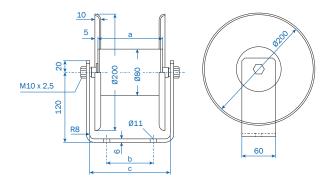
CAJA DE BORNES 20 KV

Grado de protección IP 54 Carcasa de acero inoxidable


Тіро	Peso kg	Referencia
KKU-20K-XXXX-UU-E-0000-P55-G8X3-0755330	75	970580

MALLAS TIRACABLES

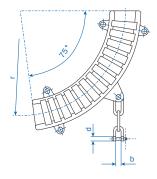
prensadas con 2 cabos, abiertas también en el lado de la anilla, con extremos de la malla sin puntos soldados con estaño

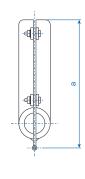


Тіро	Esfuerzo tractor máx. admisible (1) kg	para diámetro de cable	Referencia
VLZ 1	930	15-20	901620
VLZ 2	1165	20-30	901621
VLZ 3	1400	30-40	901622
VLZ 4	1630	40-50	901923

Tipo	Esfuerzo tractor máx. admisible ⁽¹⁾ kg	Para diámetro de cable	Longitud de malla, medida L ₂	Longitud de malla, medida L ₁	Referencia
VLZK 6	60	4 hasta 7	100	275	900391
VLZK 9	110	7 hasta 9	120	290	900392
VLZK 12	130	9 hasta 12	135	340	900393
VLZK 15	210	12 hasta 15	180	390	900394
VLZK 20	260	15 hasta 20	220	450	900395
VLZK 25	260	20 hasta 25	275	510	900396
VLZK 30	400	25 hasta 30	350	610	900397
VLZK 40	580	30 hasta 40	370	660	900398

RODILLOS APOYACABLES

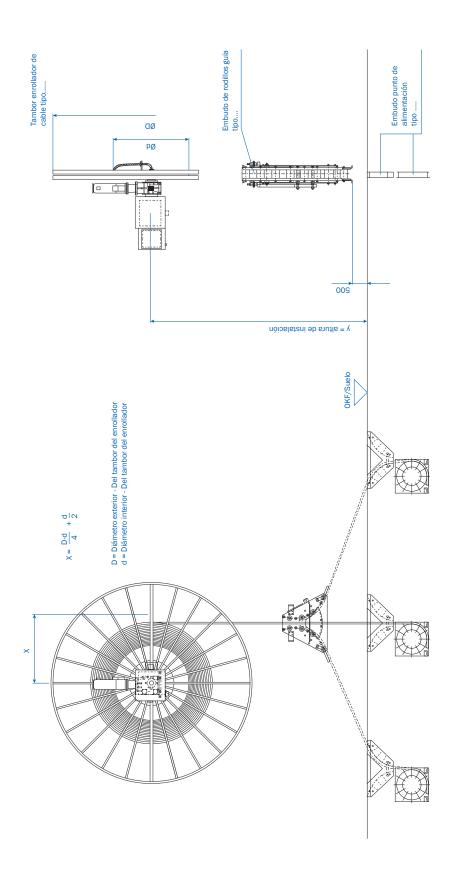

Tipo	Peso kg	Soporte	а	b	С	Referencia
TR 80/110 B 200	2,25	sin soporte	110	-	130	924450
TR 80/300 B 200	3,25		300	-	320	924460
TR 80/500 B 200	4,50		500	-	520	924470
TR 80/110 B 200 H	3,50	con soporte	110	80	130	924480
TR 80/300 B 200 H	5,15		300	250	320	924490
TR 80/500 B 200 H	6,90		500	400	520	924500


ABRAZADERAS DE CABLES

Para tensiones de hasta 1000 V, para desarrollo del cable hacia 1 o 2 lados; para baja velocidad de traslación.

APLICACIÓN

En combinación con conectores inundables subterráneos (modo reenchufado) para protección antitirones del conector o cuando no es posible la alimentación verticalmente por debajo de la guía del cable.



Tipo	Peso kg	Diámetro de cable	r	а	d	b	Referencia
LS 1	1,6	-21,5	100	205	10	14	921420
LS 2	2,5	>21,5-28,0	130	225	10	14	921430
LS 3	3,5	>28,0-36,5	170	265	12	17	921440
LS 4	5,5	>36,5-48,0	220	300	12	17	921450

DISPOSICIÓN EN MONTAJE ADOSADO

ENROLLADOR DE CABLE CON REENVÍO DE RODILLOS Y EMBOCADURA DE ALIMENTACIÓN

INSTALACIONES DE REFERENCIA

GRÚA PORTACONTENEDORES EN EL PUERTO MARÍTIMO DE BREMERHAVEN (ALEMANIA)

Accionamiento con variación de velocidad por control de frecuencia, con regulación del esfuerzo tractor, incluido control.

Cuerpo de anillos rozantes de $10\,\mathrm{kV}$ con transmisor giratorio de fibra óptica de 12 canales.

Cuerpo del enrollador: 7,4 m

Longitud de bobinado: 500 m

Cable: NTSCGEWÖU

 $6 \, \text{kV}$, $3 \, \text{x} \, 95 + 2 \, \text{x} \, 50 / 3 + 18 \, \text{fibras opticas}$

Velocidad de traslación: 55 m/min. Altura de instalación: 20 m

En servicio desde 2002.

GRÚA PORTACONTENEDORES EN EL PUERTO FLUVIAL DE DUISBURG EN EL RIN

Accionamiento con variación de velocidad por control de frecuencia, con regulación del esfuerzo tractor, incluido control.

Cuerpo de anillos rozantes de $10\,\mathrm{kV}$ con transmisor giratorio de fibra óptica de 6 canales.

Cuerpo del enrollador: 5,3 m Longitud de bobinado: 500 m

Cable: NTSCGEWÖU

 $10 \, \text{kV}$, $3 \, \text{x} \, 3.5 + 2 \, \text{x} \, 25/2 + 6$ fibras ópticas

Velocidad de traslación: 120 m/min.

Altura de instalación: 6 m

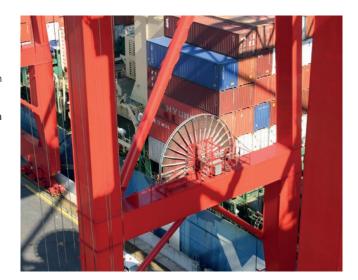
En servicio desde 2004.

INSTALACIONES DE REFERENCIA

GRÚA PORTACONTENEDORES EN EL PUERTO DE HAMBURGO

Accionamiento con variación de velocidad por control de frecuencia, con regulación del esfuerzo tractor, incluido control.

Cuerpo de anillos rozantes de $10\,\mathrm{kV}$ con transmisor giratorio de fibra óptica de 18 canales.


Cuerpo del enrollador: 7,2 m Longitud de bobinado: 650 m

Cable: NTSCGEWÖU

 $10 \,\text{kV}$, $3 \,\text{x} \, 50 + 2 \,\text{x} \, 25/2 + 18 \,\text{fibras opticas}$

Velocidad de traslación: 45 m/min. Altura de instalación: 22 m

En servicio desde 2004.

GRÚA PORTACONTENEDORES EN EL PUERTO MEDITERRÁNEO DE ASHOD/ISRAEL

Accionamiento con variación de velocidad por control de frecuencia, con regulación del esfuerzo tractor, incluido control.

Cuerpo de anillos rozantes de $10\,\mathrm{kV}$ con transmisor giratorio de fibra óptica de 6 canales.

Cuerpo del enrollador: 6,4 m

Anchura de bobinado: variable

Longitud de bobinado: 400 m

Cable: NTSCGEWÖU

 $6\,\text{kV}$, $3\,\text{x}\,70$ + $2\,\text{x}\,25/$ +6 fibras ópticas

Velocidad de traslación: 45 m/min. Altura de instalación: 18,5 m

En servicio desde 2004.

CUESTIONARIO

el.:	Fax: Página web:									
·Mail:	Página web:		Fax:							
. ¿Para qué equipo se utiliza el enrollador de cable?										
Si es preciso, adjuntar dibujos del consumidor de corriente con las co	otas de montaje que se debe	n tener presentes	6.							
1.1. Ubicación del equipo		☐inter	ior	acterior						
1.2. Temperatura ambiente			_°C	+°C						
1.3. Factor de marcha del accionamiento del equipo				f.m. %						
1.4. Condiciones ambientales										
. Ejemplo de disposición del enrollador (véase página 6)		Ejempl	0							
. Tipo de bobinado		□taml	oor ancho	☐ en espira						
. Altura de instalación del enrollador				m						
. Longitud de vía de traslación del consumidor				m						
. Desarrollo de cable hacia		□ 1 lad	do	☐ 2 lados						
. ¿Qué longitud de cable debe bobinarse en virtud de las condiciones o	de explotación?	l=		m						
Con punto fijo del cable en el centro de la vía de traslación, la longitu	d del cable es exactamente i	gual a la mitad d	e la longitud	de la vía de						
traslación.										
7.1. Con desarrollo del cable verticalmente (véase ejemplo 8)		l=	m	L= m						
7.2. Peso adicional (conector)				kg						
. Cable previsto (número de polos x sección)				mm²						
8.1. Peso del cable				kg/m						
8.2. Diámetro del cable				mm						
. Potencia a transportar				kW						
9.1. Intensidad				A						
9.2. Intensidad transitoria de arranque (véase página 5)		I _A ≈	xI _N ≈	A						
9.3. Tensión/frecuencia				Hz						
0. ¿Qué % de la potencia instalada se utiliza simultáneamente?				%						
1. ¿Cuántos anillos rozantes de fase se necesitan?										
Nuestros enrolladores están siempre equipados con un anillo de pues	sta a tierra aislado			uds.						
2. ¿Con qué frecuencia circula el equipo por horas?				veces						
3. ¿Tiempo de trabajo por jornada?				horas						
4. ¿Velocidad de traslación o elevación?				m/min						
5. Aceleración				m/s ²						
6. Motor de accionamiento del enrollador										
16.1. Tensión/frecuencia			V	Hz						
16.2. Factor de marcha				f.m. %						
7. Interruptor de final de carrera para limitación de recorrido de traslacio	ón o de elevación	□sí		□no						
bservaciones:										

NOTAS

NOTAS

AVAHLE

Paul Vahle GmbH & Co. KG

Westicker Str. 52 59174 Kamen Germany

Tel.: +49 2307 704-0 Fax: +49 2307 704-444 info@vahle.de

www.vahle.com